請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60815完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志偉(Chi-Wei Tsai) | |
| dc.contributor.author | Sung-Hsia Weng | en |
| dc.contributor.author | 翁崧夏 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:31:25Z | - |
| dc.date.available | 2016-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | Akad F, Eybishtz A, Edelbaum D, Gorovits R, Darlssa O, Iraki N. 2007. Making a friend from a foe: expressing a GroEL gene from whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus. Arch Virol 152: 1323-1339.
Ammar ED, Garganai D, Lett JM, Peterschmitt M. 2009. Large accumulation of maize streak virus in the filter chamber and midgut cells of the leafhopper vector Cicadulina mbila. Arch Virol 154: 255-262. Anthony NM, Brown JK, Markham PG, Ffrench-Constant RH. 1995. Molecular analysis of cyclodiene resistance-associated mutations among populations of the sweetpotato whitefly Bemisia tabaci. Pestic Biochem Phys 51: 220-228. Atzmon G, van Oss H, Czosnek H. 1998. PCR-amplification of tomato yellow leaf curl virus (TYLCV) DNA from squashes of plants and whitefly vectors: Application to the study of TYLCV acquisition and transmission. Eur J Plant Pathol 104: 189-194. Bennett CW. 1971. The curly top disease of sugarbeet and other plants. Am Phytopathol Soc Monogr 7: 68-81. Bedford ID, Briddon RW, Brown JK, Rosell RC, Markham PG. 1994. Geminivirus transmission and biological characterization of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125: 311-325. Bedford ID, Kelly A, Banks GK, Briddon RW, Cenis JL, Markham PG. 1998. Solanum nigrum: an indigenous weed reservoir for a tomato yellow leaf curl geminivirus in southern Spain. Eur J Plant Pathol 104: 221-222. Bosco D, Mason G, Accotto GP. 2004. TYLCSV DNA, but not infectivity, can be transovarially inherited by the progeny of the whitefly vector Bemisia tabaci (Gennadius). Virology 323: 276-283. Boykin LM, Shatters RG Jr, Rosell RC, McKenzie CL, Bagnall RA, De Barro P, Frohlich DR. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol Phylogenet Evol 44: 1306-1319. Briddon RW, Bedford ID, Tsai JH, Markham PG. 1996. Analysis of the nucleotide sequence of the treehopper-transmitted geminivirus, tomato pseudocurly top virus, suggests a recombinant origin. Virology 219: 387-394. Brown JK, Nelson MR. 1988. Transmission, host range, and virus-vector relationships of chino del tomate virus, a whitefly-transmitted geminivirus from Sinaloa, Mexico. Plant Dis 72: 866-869. Brown JK. 1994. Current status of Bemisia tabaci as a plant pest and virus vector in agro-ecosystems worldwide. FAO Plant Prot Bull 42: 3-32. Brown JK, Frohlich DR, Rosell RC. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or species complex? Annu Rev Entomol. 40: 511-534. Brown JK. 2000. Molecular markers for the identification and global tracking of whitefly vector-begomovirus complexes. Virus Res 71: 233-260. Brown JK, Czosnek H. 2002. Whitefly transmitted viruses. Adv Bot Res 36: 65-100. Brown JK. 2007. The Bemisia tabaci species complex: Genetic and phenotypic variation and relevance to TYLCV-vector interactions. In: Czosnek H. (ed). Tomato Yellow Leaf Curl Virus Disease: Management, Molecular Biology, Breeding for Resistance. Springer, Dordrecht. pp. 25-55. Byrne DN, Bellows TS Jr. 1991. Whitefly biology. Ann Rev Entomol 36: 431-457. Caciagli P, Bosco D, Al-Bitar L. 1995. Relationships of the Sardinian isolate of tomato yellow leaf curl geminivirus with its whitefly vector Bemisia tabaci Gen. Eur J Plant Pathol 101: 163-170. Caciagli P, Bosco D. 1997. Quantitation over time of tomato yellow leaf curl geminivirus DNA in its whitefly vector. Phytopathology 87: 610-613. Caciagli P, Piles VM, Marian D, Vecchiati M, Masenga V, Mason G, Falcioni T, Noris E. 2009. Virion stability is important for the circulative transmission of Tomato yellow leaf curl sardinia virus by Bemisia tabaci, but virion access to salivary glands does not guarantee transmissibility. J Virol 83: 5784-5795. Chapman RF. 1998. The Insects: Structure and Function. Cambridge, Cambridge University Press. 770 pp. Chu D, Zhang YJ, Brown JK, Cong B, Xu B, Wu QJ, Zhu GR. 2006. The introduction of the exotic Q biotype of Bemisia tabaci from the Mediterranean region into China on ornamental crops. Fla Entomol 89: 168-174. Cohen S, Nitzany FE. 1966. Transmission and host range of the tomato yellow leaf curl virus. Phytopathology 56: 1127-1131. Czosnek H, Laterrot H. 1997. A worldwide survey of tomato yellow leaf curl viruses. Arch Virol 142: 1391-1406. Czosnek H, Ghanim M, Rubinstein G, Morin S, Fridman S, Zeidan M. 2001. Whiteflies: vector, and victims (?), of geminiviruses. Adv Virus Res 57: 291-322. Czosnek H, Ghanim M, Ghanim M. 2002. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci - insights from studies with Tomato yellow leaf curl virus. Ann Appl Biol 140: 215-231. Dalton R. 2006. Whitefly infestation: The Christmas invasion. Nature 443: 898-900. De Barro PJ, Liu SS, Boykin LM, Dinsdale AB. 2011. Bemisia tabaci: A statement of species status. Annu Rev Entomol 56: 1-19. Diaz-Pendon JA, Canizares MC, Moriones E, Bejarano ER, Czosnek H, Navas-Castillo J. 2010. Tomato yellow leaf curl viruses: menage a trois between the virus complex, the plant and the whitefly vector. Mol Plant Pathol 11: 441-450. Falk BW, Tsai JH. 1998. Biology and molecular biology of viruses in the genus tenuivirus. Annu Rev Phytopathol 36: 139-163. Fondong VN. 2013. Geminivirus protein structure and function. Mol Plant Pathol 10: 1-15. Garcia-Andres S, Monci F, Navas-Castillo J, Moriones E. 2006. Begomovirus genetic diversity in the native plant reservoir Solanum nigrum: Evidence for the presence of a new virus species of recombinant nature. Virology 350: 433-442. Ghanim M, Morin S, Zeidan M, Czosnek H. 1998. Evidence for transovarial transmission of tomato yellow leaf curl virus by its vector, the whitefly Bemisia tabaci. Virology 240: 295-303. Ghanim M, Czosnek H. 2000. Tomato yellow leaf curl geminivirus (TYLCV-Is) is transmitted among whiteflies (Bemisia tabaci) in a sex-related manner. J Virol 74: 4738-4745. Ghanim M, Morin S, Czosnek H. 2001. Rate of Tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91: 188-196. Ghanim M, Brumin M, Popoviski S. 2009. A simple, rapid and inexpensive method for localization of Tomato yellow leaf curl virus and Potato leafroll virus in plant and insect vectors. J Virol Meth 159: 311-314. Glick E, Zrachya A, Levy Y, Mett A, Gidoni D, Belausov E, Citovsky V, Gafni Y. 2008. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc Natl Acad Sci 105: 157-161. Gotz M, Popovski S, Kollenberg M, Gorovits R, Brown JK, Cicero JM, Czosnek H, Winter S, Ghanim M. 2012. Implication of Bemisia tabaci heat shock protein 70 in begomovirus-whitefly interactions. J Virol 86: 13241-13252. Guo JY, Dong SZ, Yang Xl, Cheng L, Wan FH, Liu SS, Zhou XP, Ye GY. 2012 Enhanced vitellogenesis in a whitefly via feeding on a begomovirus-Infected Plant. PLoS ONE 7: e43567. Hanssen IM, Lapidot M, Thomma BPHJ. 2010. Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23: 539-548. Hogenhout SA, Ammar ED, Whitfield AE, Redinbaugh MG. 2008. Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46: 327-359. Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I. 2005. Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Arch Insect Biochem Physiol 58: 216-225. Honda K, Wei T, Hagiwara K, Higashi T, Kimura I. 2008. Retention of Rice dwarf virus by descendants of pairs of viruliferous vector insects after rearing for 6 years. Phytopathology 97: 712-716. Hsieh CH, Wang CH, Ko CC. 2007. Evidence from molecular markers and population genetic analyses suggests recent invasions of the western north Pacific region by biotypes B and Q of Bemisia tabaci (Gennadius). Environ Entomol 32: 952-961. Huang LH. 2008. The study of insect-borne plant diseases and insect vectors. Taiwan Agricultural Chemicals and Toxic Substances Research Institute Technical Issue No. 185:1-11. Taichung. (in Chinese) Jan FJ, Green SK, Shih SL, Lee LM, Ito H, Kimbara J, Hosoi, K, Tsai SW. 2007. First report of Tomato yellow leaf curl Thailand virus in Taiwan. Plant Disease 91: 1363. Jones DR. 2003. Plant viruses transmitted by whiteflies. Eur J Plant Pathol. 109: 195-219. Kashina BD, Mabagala RB, Mpunami AA. 2002. Reservoir weed hosts of tomato yellow leaf curl Begomovirus from Tanzania. Arch Phytopathol Plant Protect 35: 269-278. King AMQ, Adams MJ, Carstens EB, Lefknowitz EJ. 2012. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, London. 1327 pp. Ko CC, Chen CN, Wang CH. 2002. A review of taxonomic studies on the Bemisia tabaci species complex. Formosan Entomol 22: 307-341. Ko CC, Hung YC, Wang CH. 2007. Sequence characterized amplified region markers for identifying biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). J Appl Entomol 131: 542-547. Legg JP, Owor B, Sseruwagi P, Ndunguru J. 2006. Cassava mosaic virus disease in East and Central Africa: Epidemiology and management of a regional pandemic. Adv Virus Res 67: 355-418. Liu SS, De Barro PJ, Xu J, Luan JB, Zang LS, Ruan YMX, Wan FH. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318: 1769-1772. Liu SS, Colvin JJ, De Barro PJ. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there? J integr Agr 11: 176-186. Mansour A, Al-Musa A. 1992. Tomato yellow leaf curl virus: Host range and virus-vector relationship. Plant Pathol 41: 122-125. McKenzie CL, Hodges G, Osborne LS, Byrne FJ, Shatters RG. 2009. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in Florida-investigating the Q invasion. J Econ Entomol 102: 670-676. Mehta P, Wyman JA, Nakhla MK, Maxwell DP. 1994. Transmission of tomato yellow leaf curl Geminivirns by Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 87: 1291-1297. Medina V, Pinner MS, Bedford ID, Achon MA, Gemeno C, Markham PG. 2006. Immunolocalization of Tomato yellow leaf curl Sardinia virus in natural host plants and its vector Bemisia tabaci. J Plant Pathol 88: 299-308. Morin S, Ghanim M, Sobol I, Czosnek H. 2000. The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276: 406-416. Moriones E, Navas-Castillo J. 2000. Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71: 123-134. Muniyappa V, Venkatesh HM, Ramappa HK, Kulkarni RS, Zeidan M, Tarba CY, Ghanim M, Czosnek H. 2000. Tomato leaf curl virus from Bangalore (ToLCV-Ban4): Sequence comparison with Indian ToLCV isolates, detection in plants and insects, and vector relationships. Arch Virol 145: 1583-1598. Mubin M, Amin I, Amrao L, Briddon RW, Mansoor S. 2010. The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Mol Plant Pathol 11: 245-254. Nauen R, Stumpf N, Elbert A. 2002. Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Manag Sci 58: 868-875. Nault LR, Ammar ED. 1989. Leafhopper and planthopper transmission of plant viruses. Annu Rev Entomol 34: 503-529. Nault LR. 1994. Transmission biology, vector specificity and evolution of planthopper-transmitted viruses. In: Denno RF, Perfect TJ (eds). Planthoppers: Their Ecology, and Management. Chapman & Hall, New York. pp. 429-448. Nault LR. 1997. Arthropod transmission of plant viruses: A new synthesis. Annu Entomol Soc Am 90: 521-541. Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S. 2011. Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49: 219-248. Nawaz-ul-Rehman MS, Fauquet CM. 2009. Evolution of geminiviruses and their satellites. FEBS Lett 583: 1825-1832. Ohnesorge S, Bejarano ER. 2009. Begomovirus coat protein interacts with a small heat-shock protein of its transmission vector (Bemisia tabaci). Insect Mol Biol 18: 693-703. Ohnishi J, Kitamura T, Terami F, Honda KI. 2009. A selective barrier in the midgut epithelial cell membrane of the nonvector whitefly Trialeurodes vaporariorum to Tomato yellow leaf curl virus uptake. J Gen Plant Pathol 75: 131-139. Osman F, Leutenegger C, Golino, D, Rowhani A. 2007. Real-time RT-PCR (TaqManR) assays for the detection of Grapevine Leafroll associated viruses 1-5 and 9. J Virol Methods 141: 22-29. Pan H, Chu D, Yan W, Su Q, Liu B, Wang S, Wu Q, Xie W, Jiao X, Li R, Yang N, Yang X, Xu B, Brown JK, Zhou X, Zhang Y. 2012. Rapid spread of Tomato Yellow Leaf Curl Virus in China is aided differentially by two invasive whiteflies. PLoS ONE 7: e34817. Pesic-van Esbroeck Z, Harris KF, Duffus JE. 1996. Sweet potato whitefly-squash leaf curl virus immunocytochemistry. USDA ARS Pub 1: 40. Perring TM. 2001. The Bemisia tabaci species complex. Crop Prot 20: 725-737. Polston JE, Al-Musa A, Perring TM, Dodds JA. 1990. Association of the nucleic acid of squash leaf curl geminivirus with the whitefly Bemisia tabaci. Phytopathology 80: 850-856. Polston JE, Anderson PK. 1997. The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant Dis 81: 1358-1369. Polston JE, McGovern RJ, Brown LG. 1999. Introduction of tomato yellow leaf curl virus in Florida and implications for the spread of this and other geminiviruses of tomato. Plant Dis 83: 984-988. Polston JE, Sherwood T, Rosell R, Nava A. 2001. Detection of Tomato yellow leaf curl and Tomato mottle virus in developmental stages of the whitefly vector, Bemisia tabaci. In: Third International Geminivirus Symposium, John Innes Centre, Norwich, UK, July 24-28, Abstract 81. Qui BL, Ren SX, Wen SY, Mandour SN. 2006. Population differentiation of three biotypes of Bemisia tabaci in China by DNA polymorphism. J South China Agri Univ 27: 29-33. Reynaud B, Peterschmitt M. 1992. A study of the mode of transmission of MSV by Cicadulina mbila using an enzyme-linked immunosorbent assay. Ann Appl Biol 121: 85-94. Rojas MR, Gilbertson RL, Maxwell DP. 1993. Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77: 340-347. Rosell RC, Torres-Jerez I, Brown JK. 1999. Tracing the geminivirus-whitefly transmission pathway by polymerase chain reaction in wahitefly extracts, saliva, hemolymph, and honeydew. Phytopathology 89: 239-246. Rubinstein G, Czosnek H. 1997. Long-term association of tomato yellow leaf curl virus (TYLCV) with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity and fecundity. J Gen Virol 78: 2683-2689. Sanchez-Campos S, Navas-Castillo J, Camero R, Soria C, Diaz JA, Moriones E. 1999. Displacement of tomato yellow leaf curl virus (TYLCV)-Sr by TYLCV-Is in tomato epidemics in Spain. Phytopathology 89: 1038-1043. Sinisterra XH, McKenzie, CL, Hunter WB, Powell CA, Shatters RG Jr. 2005. Differential transcriptional activity of plant-pathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). J Gen Virol 86: 1525-1532. Simons JN, Coe DM. 1958. Transmission of pseudo-curly top virus in Florida by a treehopper. Virology 6: 43-48. Soto MJ, Gilbertson RL. 2003. Distribution and rate of movement of the curtovirus Beet curly top virus (Family Geminviridae) in the beet leafhopper. Phytopathology 93: 478-484. Stanley J, Gay MR. 1983. Nucleotide sequence of cassava latent virus DNA. Nature 301: 260-262. Thresh JM, Otim-Nape GW, Fargette D. 1998. The components and deployment of resistance to cassava mosaic virus disease. Integr Pest Manag Rev 3: 209-224. Tsai WS, Shih SL, Kenyon L, Green SK, Jan FJ. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathol 60: 787-799. Uchibori M, Hirata A, Suzuki M, Ugaki M. 2013. Tomato yellow leaf curl virus accumulates in vesicle-like structures in descending and ascending midgut epithelial cells of the vector whitefly, Bemisia tabaci, but not in those of nonvector whitefly Trialeurodes vaporariorum. J Gen Plant Pathol 79: 115-122. Ueda S, Kimura T, Onuki M, Hanada K. Iwanami T. 2004. Three distinct groups of isolates of Tomato yellow leaf curl virus in Japan and construction of an infectious clone. J Gen Plant Pathol 70: 232-238. Ueda S, Brown JK. 2006. First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparastica 34: 405-411. Wang J, Zhao H, Liu J, Jiu M, Qian YJ, Liu SS. 2010. Low frequency of horizontal and vertical transmission of two begomoviruses through whiteflies exhibits little relevance to the vector infectivity. Ann Appl Biol 157: 125-133. Zchori-Fein E, Brown JK. 2002. Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 95: 711-718. Zeidan M, Czosnek H. 1991. Acquisition of tomato yellow leaf curl virus by the whitefly Bemisia tabaci. J Gen Virol 72: 2607-2614. Zhang LP, Zhang YJ, Zhang WJ, Wu QJ, Xu BY, Chu D. 2005. Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J Appl Entomol 129: 121-128. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60815 | - |
| dc.description.abstract | 菸草粉蝨 (Bemisai tabaci) 傳播之番茄黃化捲葉病 (tomato yellow leaf curl disease) 經常造成田間番茄產量 100% 的損失。番茄黃化捲葉病是係以一群親緣關係相近之番茄黃化捲葉病毒種群 (tomato yellow leaf curl viruses) 所引發的植物病毒病害。番茄黃化捲葉病毒種群,屬於雙生病毒科 (Geminiviridae)、豆類金黃嵌紋病毒屬 (Begomovirus)。菸草粉蝨被認為是複合種,目前包含至少 28 種生物小種。在眾多生物小種中,B 型和 Q 型生物小種於全球分佈 (包括台灣) 且危害嚴重。雖然番茄黃化捲葉病毒的傳播特性已被研究許多,但其傳播模式仍存在著爭議。本研究的目的有三:一為比較兩種在台灣盛行的番茄黃化捲葉泰國病毒 (Tomato yellow leaf curl Thailand virus, TYLCTHV) 與番茄捲葉台灣病毒 (Tomato leaf curl Taiwan virus, ToLCTWV) 的傳播特徵;二為研究此兩種病毒是否會以經卵傳播 (transovarial transmission) 的方式傳播至病媒昆蟲的子代;三為檢測此兩種病毒於菸草粉蝨體內的感染及散播情形。藉由傳播試驗以及免疫螢光檢測結果,我們推測 菸草粉蝨 B 型生物小種以特殊且類似於持續性增殖型的模式傳播TYLCTHV,前人研究也顯示番茄捲葉病毒以色列分離株 Tomato yellow leaf curl virus Israel isolate (TYLCV-Is) 的傳播模式和 TYLCTHV 相似。傳播病媒傳播的結果顯示無論是菸草粉蝨 B 型還是 Q 型生物小種,皆可經由 1 至 2 小時的獲毒停留時間 (acquisition access period),即可傳播 TYLCTHV 和 ToLCTWV 至供試番茄植株上。B 型生物小種的傳播效率比 Q 型生物小種更佳。B 型生物小種經由 2 至 6 小時的接種停留時間 (inoculation access period) 傳播 TYLCTHV 和 ToLCTWV;Q 型生物小種皆經由 2 小時的接種停留時間可傳播此兩種病毒,但其傳播效率皆低於B 型生物小種。此外,TYLCTHV 和 ToLCTWV 經由 B 型生物小種傳播的潛伏期 (latent period) 為 4 至 8 小時;TYLCTHV 和 ToLCTWV 於 Q型生物小種的潛伏期則分別為 10 和 40 小時。此兩種病毒皆可以持續保留在 B 型和 Q 型生物小種體內,但僅B 型生物小種保有傳播病毒的能力。有趣的是,僅僅 TYLCTHV 可以經由 B 型生物小種以經卵傳播的方式傳播給病媒昆蟲的子代。以上結果顯示,B 型生物小種為 TYLCTHV 效率較佳的病媒昆蟲。這個研究成果或許對田間 ToLCTWV 於短時間內被 TYLCTHV 取代的現象提出一些可能的原因。本研究更檢測了TYLCTHV 和 ToLCTWV 於B 型和 Q 型生物小種的感染狀況及散播情形,結果發現此兩種病毒皆可感染兩種菸草粉蝨生物小種的消化道,但僅有 B 型生物小種的微卵管被偵測到明顯的病毒抗原訊號,證實兩種病毒的散播途徑可至微卵管。本研究提供往後豆類金黃嵌紋病毒與菸草粉蝨間的傳播生物學研究的架構,從研究成果獲得的知識和資訊更可增進番茄黃化捲葉病的防治策略。 | zh_TW |
| dc.description.abstract | Whitefly-transmitted tomato yellow leaf curl disease (TYLCD) usually causes tomato yield losses of up to 100 % in tomato production. TYLCD is associated with a group of phylogenetically related viruses named tomato yellow leaf curl viruses (TYLCVs). These viruses belong to the genus Begomovirus, family Geminiviridae and are transmitted by B. tabaci which is also a species complex with at least 28 biotypes. Among these biotypes, B. tabaci B and Q biotypes are predominant biotypes and cause great economic losses globally including Taiwan. Even though the transmission of TYLCVs by B. tabaci have been studied by several research groups, the transmission mode of TYLCVs still remains controversial. The first objective of my study was to determine transmission characteristics for Tomato yellow leaf curl Thailand virus (TYLCTHV) and Tomato leaf curl Taiwan virus (ToLCTWV), which are predominant viruses in tomato fields in Taiwan, by B. tabaci B and Q biotypes. The second objective was to investigate whether TYLCTHV/ToLCTWV is transovarially transmitted to the progeny of its insect vectors. The third objective was to examine the infection and dissemination of either virus in its insect vectors. The transmission and indirect immunofluorescence assays concluded that TYLCTHV was transmitted by B. tabaci in special type of persistent-propagative transmission mode that Tomato yellow leaf curl virus Israel isolate (TYLCV-Is) also belongs to. The transmission of TYLCTHV and ToLCTWV by B. tabaci B and Q biotypes occurred with a minimum 1-2 h acquisition access period (AAP). Bemisia tabaci B biotype had better transmission ability than Q biotype for both viruses. Bemisia tabaci B biotype transmitted TYLCTHV and ToLCTWV with a minimum 2-6 h inoculation access period (IAP); Q biotype transmitted both viruses with a minimum 2-h IAP but showed lower efficiency than those transmitted by B biotype. In addition, B. tabaci B biotype transmitted TYLCTHV and TolCTWV with a latent period of no more than 4-8 h; Q biotype transmitted both viruses with a latent period of no more than 10 and 40 h, respectively. Even both viruses persisted in viruliferous B. tabaci B and Q biotypes for lifelong, but only B biotype remained the infectivity of TYLCTHV. Interestingly, transovarial transmission also only occurred in TYLCTHV transmitted by B. tabaci B biotype. These results imply that B. tabaci B biotype was a more efficient vector for TYLCTHV. It may attribute the displacement of ToLCTWV by TYLCTHV in the tomato fields in Taiwan within a few years to the virus-vector interaction. We further examined the infection and dissemination of TYLCTHV and ToLCTWV in B. tabaci B and Q biotypes. The results suggest that both viruses infected the alimentary gut of B. tabaci B and Q biotypes. Both viruses infected the ovariole of B. tabaci B biotype, but not Q biotype. This study would like to provide a framework for future studies on different begomovirus transmission by different biotypes of B. tabaci. The knowledge and information will improve the development of better management practices for TYLCD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:31:25Z (GMT). No. of bitstreams: 1 ntu-102-R00632005-1.pdf: 1874339 bytes, checksum: 30bc4fae5f49c8302d1fff66523245eb (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENTS
中文摘要………………………………………………………………………......i ABSTRACT…………………………………………………………………………...iii CONTENTS……………………………………………………………………………1 INTRODUCTION…………………………………………………………………….7 LITERATURE REVIEW……………………………………………………………..10 MATERIALS AND METHODS.…………………………………………………….26 Insects, viruses, and plants……………………………..……………….…....26 Acquisition and inoculation access periods…………………………………27 Latent period and retention time…………………………………………...28 Virus in vector hemolymph……………………………………….............29 Transovarial passage and transmission………………………………………......30 DNA extraction from tomato plants and whiteflies……………………………...30 Polymerase chain reaction………………………………………………………..31 Antisera against Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus ……………………………...……………………………………...32 Indirect immunofluorescence assay ...…………………………………………...33 RESULTS……………………………………………………………………………..35 Acquisition access periods……………………………………………………....35 Inoculation access periods……………………………………………………….36 Latent period for vector transmission…………………………………………....37 Virus retention and persistence of infectivity…………………………..………39 Virus in vector hemolymph……………………………………………………..40 Transovarial passage and transmission………………………………………......40 Infection and dissemination of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus in Bemisia tabaci……………………………………… 42 DISCUSSION………………………………………………………………………...44 REFERENCES……………………………………………………………………….53 List of tables Table 1. Transmission rate of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci B biotype with various IAPs after a 2-h AAP………………………………………………………………………….62 Table 2. Transmission rate of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci Q biotype with various IAPs after a 4-h AAP……………………………………………………………………….…63 Table 3. Virus retention and transmission rate of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by by Bemisia tabaci B biotype………....64 Table 4. Virus retention and transmission rate of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci Q biotype…………….65 Table 5. Transovarial passage and transmission of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci……………..….66 Table 6. Detection of Tomato yellow leaf curl Thailand virus (TYLCTHV) and Tomato leaf curl Taiwan virus (ToLCTWV) in hemolymph of Bemisia tabaci B and Q biotypes………………………………………………………….67 List of figures Fig. 1. Transmission efficiency of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus with various acquisition access periods by Bemisia tabaci B biotype following by a 48-h IAP.………………………..................68 Fig. 2. Relationship of acquisition access periods and the transmission efficiencies of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci B biotype……………………….…………………………….69 Fig. 3. Transmission efficiency of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus with various acquisition access periods by Bemisia tabaci Q biotype following by a 48-h IAP.…………………................……..70 Fig. 4. Relationship of acquisition access periods and the transmission efficiencies of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci Q biotype……………………………………………………..71 Fig. 5. Transmission efficiency of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus with various inoculation access periods by Bemisia tabaci B biotype after a 48-h AAP……………............………..…………….72 Fig. 6. Relationship of inoculation access periods and the transmission efficiencies of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci B biotype……………………………………………………..73 Fig. 7. Transmission efficiency of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus with various inoculation access periods by Bemisia tabaci Q biotype after a 48-h AAP.…………………………………………..74 Fig. 8. Relationship of inoculation access periods and the transmission efficiencies of Tomato yellow leaf curl Thailand virus and Tomato leaf curl Taiwan virus by Bemisia tabaci Q biotype……………………………….…………………...75 Fig. 9. Indirectly immunofluorescence detection of Tomato yellow leaf curl Thailand virus in viruliferous Bemisia tabaci B biotype with a 5-days AAP.……….....76 Fig. 10. Indirectly immunofluorescence detection of Tomato yellow leaf curl Thailand virus in viruliferous Bemisia tabaci Q biotype with a 5-days AAP.…............77 Fig. 11. Indirectly immunofluorescence detection of Tomato yellow leaf curl Thailand virus in viruliferous Bemisia tabaci B biotype with a 5-days AAP………..…78 Fig. 12. Indirectly immunofluorescence detection of Tomato yellow leaf curl Thailand virus in viruliferous Bemisia tabaci Q biotype with a 5-days AAP…………..79 Fig. 13. Indirectly immunofluorescence detection of Tomato yellow leaf curl Taiwan virus in viruliferous Bemisia tabaci B biotype with a 5-days AAP…………..80 Fig. 14. Indirectly immunofluorescence detection of Tomato yellow leaf curl Taiwan virus in viruliferous Bemisia tabaci Q biotype with a 5-days AAP…………..81 Fig. 15. Indirectly immunofluorescence detetction of Tomato yellow leaf curl Taiwan virus in viruliferous Bemisia tabaci B biotype with a 5-days AAP…………..82 Fig. 16. Indirectly immunofluorescence detection of Tomato yellow leaf curl Taiwan virus in viruliferous Bemisia tabaci Q biotype with a 5-days AAP.………….83 Fig. 17. Dissemination of Tomato yellow leaf curl Thailand virus in Bemisia tabaci B biotype of selected tissues participating in the transmission pathway. Female whiteflies were caged with virus infected tomato plants for various AAPs from 12 h to 96 h..…………………..…………………………………............……84 Fig. 18. Dissemination of Tomato yellow leaf curl Thailand virus in Bemisia tabaci Q biotype of selected tissues participating in the transmission pathway. Female whiteflies were caged with virus infected tomato plants for various AAPs from 12 h to 96 h.……………………………………………………………......….85 | |
| dc.language.iso | en | |
| dc.subject | 豆類金黃嵌紋病毒屬 | zh_TW |
| dc.subject | 菸草粉蝨 | zh_TW |
| dc.subject | 傳播模式 | zh_TW |
| dc.subject | 經卵傳播 | zh_TW |
| dc.subject | 病媒昆蟲 | zh_TW |
| dc.subject | transovarial transmission | en |
| dc.subject | Bemisia tabaci | en |
| dc.subject | transmission mode | en |
| dc.subject | Begomovirus | en |
| dc.subject | insect vector | en |
| dc.title | 菸草粉蝨 B 與 Q 生物小種傳播兩種番茄捲葉病毒之傳播生物學 | zh_TW |
| dc.title | Transmission biology of two tomato leaf curl viruses by Bemisia tabaci B and Q biotypes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 柯俊成,黃莉欣,蔡文錫 | |
| dc.subject.keyword | 豆類金黃嵌紋病毒屬,菸草粉蝨,傳播模式,經卵傳播,病媒昆蟲, | zh_TW |
| dc.subject.keyword | Begomovirus,Bemisia tabaci,transmission mode,transovarial transmission,insect vector, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
