Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉丙成
dc.contributor.authorHung-Jui Chiuen
dc.contributor.author邱泓瑞zh_TW
dc.date.accessioned2021-06-16T10:31:11Z-
dc.date.available2018-09-02
dc.date.copyright2013-09-02
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation[1] Ian F. Akyildiz, Fernando Brunetti, and Cristina Blazquez, “Nanonetworks: A new ’
communication paradigm,” Computer Networks Journal, vol. 52, no. 12, pp. 2260–
2279, Aug. 2008.
[2] T. Suda, M. Moore, T. Nakano, R. Egashira, and A. Enomoto, “Exploratory research on molecular communication between nanomachines,” in Proc. Genetic and
Evolutionary Computation Conference (GECCO), Jun. 2005.
[3] T. Nakano and T. Suda, “Biological cell communications technology: An architecture overview,” in International Conference on Networked Computing and Advanced
Information Management, Aug. 2010, pp. 488–490.
[4] R.A. Freitas, “Nanomedicine, volume I: Basic capabilities.,” Landes Biosience,
1999.
[5] M. Pierobon and I. F. Akyildiz, “Diffusion-based noise analysis for molecular communication in nanonetworks,” IEEE Trans. Signal Processing, vol. 59, no. 6, pp.
2532–2547, Jun. 2011.
[6] S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, and
T. Nakano, “Molecular communication,” NSTI-Nanotech, vol. 3, pp. 391–394,
2005.
[7] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular communication through gap junction channels,” Springer Transactions on Computational
Systems Biology, vol. 5410, pp. 81–99, 2008.
[8] Llu’ıs Parcerisa Gine and Ian F. Akyildiz, “Molecular communication options for ’
long range nanonetworks,” Computer Networks, vol. 53, no. 16, pp. 2753–2766,
Nov. 2009.
[9] Luis C. Cobo and Ian F. Akyildiz, “Bacteria-based communication in nanonetworks,” Nano Communication Networks, vol. 1, no. 4, pp. 244–256, Dec. 2010.
[10] David E. Clapham, “Calcium signaling,” Cell, vol. 131, no. 6, pp. 1047–1058, Dec.
2007.
[11] M.J. Berridge, “The AM and FM of calcium signalling,” Nature, vol. 386, no. 6627,
pp. 759–780, Apr. 1997.
[12] Ling-San Meng, Ping-Cheng Yeh, Kwang-Cheng Chen, and Ian F. Akyildiz, “A
diffusion-based binary digital communication system,” in Proc. IEEE ICC, June
2012.
[13] T. Nakano, “Channel model and capacity analysis of molecular communication with
Brownian motion,” IEEE Communications Letters, vol. 16, no. 6, pp. 797–800, Jun.
2012.
[14] Y. H. Wang, “On the number of successes in independent trials,” Statistica Sinica,
vol. 3, pp. 295–312, 1993.
[15] Victor Perez-Abreu, “Poisson approximation to power series distributions,” ’ The
American Statistician, vol. 45, no. 1, pp. 42–44, Feb. 1991.
[16] L Le Cam, “An approximation theorem for the Poisson binomial distribution,” Pacific Journal of Mathematics, vol. 10, no. 4, pp. 1181–1197, 1960
[17] Jr. J. L. Hodges and Lucien Le Cam, “The Poisson approximation to the Poisson
binomial distribution,” The Annals of Mathematical Statistics, vol. 31, no. 3, pp.
737–740, Sep. 1960.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60810-
dc.description.abstract奈米科技近年來的快速發展讓許多奈米機器能夠展現基本的通訊功能。為了讓這些奈米機器能夠互相溝通,分子通訊是一種用分子來傳輸訊息且有前途的通訊機制。但是跟傳統的電磁波通訊相比,分子通訊常常因為分子緩慢的擴散過程和分子之間的干擾,使其可靠度不高。在本論文中,我們提供了一種低複雜度的系統設計去解決上述問題。我們先提出最好的接收端設計,但因為複雜度的問題,我們用普瓦松分配去近似普瓦松二項式分配降低接收端的複雜度。接下來我們提出最好的傳送端設計讓系統運作得更好,並提出了分子通訊中的噪音模型讓系統更具真實性。最後為了解決分子緩慢的擴散過程,我們提出了多重振幅調變讓傳輸效率更好。zh_TW
dc.description.abstractDramatic progress in nanotechnology has enabled nano-machines to perform basic functions of communication. To interconnect nano-machines, molecular communication is one of the most promising communication mechanisms, in which molecules are used to deliver information. However, compared to classical communication schemes, the reliability of molecular communication is often criticized due to the slow diffusion process and the inter-symbol interference (ISI). In this thesis, we propose a low complexity system design for diffusion-based molecular communication to solve the above problems. We first derive the optimal receiver and then use the Poisson distribution to approximate the Poisson binomial distribution in order to obtain a receiver with lower complexity. After solving the ISI problem, we derive the optimal transmitter design to enhance the system performance and, moreover, we propose a noise model to make the system more practical. To solve the slow diffusion process problem, we propose multiple amplitude modulation to improve the transmission efficiency. In conclusion, we propose system design in diffusion-based molecular communication to solve the ISI and slow diffusion process problem.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:31:11Z (GMT). No. of bitstreams: 1
ntu-102-R00942113-1.pdf: 8050728 bytes, checksum: 66cc6644729f3be8045aca034bc027ac (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Hill-climbing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Receiver Design under Binary Digital Signaling . . . . . . . . . . . . . . . . . 13
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Optimal Receiver Design and Poisson Approximation . . . . . . . . . . . 17
3.2.1 Optimal Receiver Design . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Simplification by Poisson Approximation . . . . . . . . . . . . . 20
3.2.3 Near-Optimal Receiver Design . . . . . . . . . . . . . . . . . . . 22
3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Transmitter Design under Binary Digital Signaling . . . . . . . . . . . . . . . . 29
4.1 Optimal Transmitter Design . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Noise from Environment and Other Transmitters . . . . . . . . . . . . . 32
4.2.1 Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.2 Optimal Design under Noise Model . . . . . . . . . . . . . . . . 33
4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Multiple Amplitude Digital Signaling . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.1 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.2 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Optimal System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Optimal Receiver Design . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Optimal Transmitter Design . . . . . . . . . . . . . . . . . . . . 43
5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
dc.language.isoen
dc.subject擴散程序zh_TW
dc.subject分子通訊zh_TW
dc.subject交互符號干擾zh_TW
dc.subjectDiffusion processen
dc.subjectMolecular communicationen
dc.subjectInter-symbol interferenceen
dc.title分子擴散之數位通訊系統zh_TW
dc.titleDigital System Design for Diffusion-based Molecular Communicationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor李佳翰
dc.contributor.oralexamcommittee孟令三
dc.subject.keyword擴散程序,分子通訊,交互符號干擾,zh_TW
dc.subject.keywordDiffusion process,Molecular communication,Inter-symbol interference,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
7.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved