請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60807
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 久米朋宣(Tomonori Kume) | |
dc.contributor.author | Sophie Laplace | en |
dc.contributor.author | 羅明慧 | zh_TW |
dc.date.accessioned | 2021-06-16T10:31:03Z | - |
dc.date.available | 2013-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-14 | |
dc.identifier.citation | Alvin, K., & Murphy, R. J. (1988). Variation in Fibre and Parenchyma Wall Thickness in Culms of the Bamboo Sinobambusa tootsik. IAWA Bull. 9: 353-361.
Arnell, N., Bates, B., Lang, H., Magnuson, J. J., & Mulholland, P. (1996). Hydrology and freshwater ecology. Cambridge University Press, New York (USA), 325-364. Barbeta, A., Ogaya, R., & Penuelas, J. (2012). Comparative study of diurnal and nocturnal sap flow of Quercus ilex and Phillyrea latifolia in a Mediterranean holm oak forest in Prades (Catalonia, NE Spain). Trees, 26(5), 1651-1659. Black, T. A., Tanner, C. B., and Gardner, W. R. (1970). Evapotranspiration from a snap bean crop. Agron. J . 62,66-69. Bosveld, F. C., & Bouten, W. (2001). Evaluation of transpiration models with observations over a Douglas-fir forest. Agricultural and forest meteorology,108(4), 247-264. Burgess, S. S. O., & Dawson, T. E. (2004). The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell & Environment, 27(8), 1023-1034. Bystriakova, N., Kapos, V., Lysenko, I., & Stapleton, C. M. A. (2003). Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodiversity & Conservation, 12(9), 1833-1841. Canham, C. D. (1988). Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69: 786-795. Cochard, H., Ewers, F. W., & Tyree, M. T. (1994). Water relations of a tropical vine-like bamboo (Rhipidocladum racemiflorum): root pressures, vulnerability to cavitation and seasonal changes in embolism. Journal of Experimental Botany. 45(8): 1085-1089. Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1), 73-106. Fu, M., Fang, M., Xie, J. et al. (1989). Nutrient cycling in bamboo stands / Leaf litter and its decomposition in pure Phyllostachys pubescens stands. Journal of Forestry Research. 2(3):207-213. (In Chinese). Garcia‐Santos, G., & Bruijnzeel, L. A. (2011). Rainfall, fog and throughfall dynamics in a subtropical ridge top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain). Hydrological Processes, 25(3), 411-417. Granier, A. (1985). Une nouvelle methode pour la mesure du flux de seve brute dans le tronc des arbres. Ann. Sci. for. 42(2):81-88. French. Griscom, B. W., & Ashton, P. M. S. (2003). Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecology and Management. 175(1): 445-454. Isagi, Y., Torii, A., (1997). Range expansion and its mechanism in a naturalized bamboo species, Phyllostachys pubescens, in Japan. J. Sustain. For. 6: 127–142. Jarvis, P. G. (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 273(927), 593-610. Jarvis, P.G., McNaughton, K.G. (1986). Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49. Jones, H. G. (1992). Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press. Kobayashi, T., Tada, M. (2010). How do Moso bamboo forests change carbon sequestration and storage, and decomposition of soil organic matter in community forests? Shinrin Kagaku 53, 6–10 (in Japanese). Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Kumagai, T. O., Shinohara, Y., & Otsuki, K. (2010). Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. Forest ecology and management. 260(8): 1295-1302. Komatsu, H., Onozawa, Y., Kume, T., Tsuruta, K., Shinohara, Y., & Otsuki, K. (2012). Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology.156: 111-120. Kume, T., Onozawa, Y., Komatsu, H., Tsuruta, K., Shinohara, Y., Umebayashi, T., & Otsuki, K (2010). Stand-scale transpiration estimates in a Moso bamboo forest:(I) applicability of sap flux measurements. Forest Ecology and Management. 260.8: 1287-1294. Kume, T., Otsuki, K., Du, S., Yamanaka, N., Wang, Y. L., & Liu, G. B. (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand‐scale transpiration estimates. Hydrological Processes, 26(8), 161-1168. Kominami Y, Suzuki M. (1993). In Exchange Processes at the Land Surface for a Range of Space and Time Scales, Bolle H-J, Feddes RA, Kalma JD(eds). IAHS Publication No. 212. IAHS Press: Wallingford; 27–34. Lambers, H., Stuart C. F., Pons T.L. (2008). Plant physiological ecology. 2nd ed. Springler Science. Larpkern, P., Moe, S. R., & Totland, O. (2011). Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia, 165(1), 161-168. Li, Z., Zhao B., & Zhu Z. (2003). Species and distribution of mountain bamboos in Shennongjia, Central China. Journal of Forestry Research .14.1: 35-38. Liese, W., & Weiner, G. (1996). Ageing of bamboo culms. A review. Wood Science and Technology, 30(2), 77-89. Liese, W. (1998). The anatomy of bamboo culms. Vol. 18. Brill Academic Publishers. Lin, W. C., Kang, Z. Y., Hwang, S. G., Kiang, T. (1962). Investigation on resources of important bamboos in Taiwan. Co-operative bulletin of Taiwan forestry research institute, 4. Lopez-Bernal, A., Alcantara, E., Testi, L., & Villalobos, F. J. (2010). Spatial sap flow and xylem anatomical characteristics in olive trees under different irrigation regimes. Tree physiology, 30(12), 1536-1544. Lu, P., Muller, W. J., & Chacko, E. K. (2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20(10), 683-692. Massman, W. J., & Kaufmann, M. R. (1991). Stomatal response to certain environmental factors: a comparison of models for subalpine trees in the Rocky Mountains. Agricultural and forest meteorology, 54(2), 155-167. Monteith, J.L. (1965). Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205-234. Montti, L., Campanello, P. I., Gatti, M. G., Blundo, C., Austin, A. T., Sala, O. E., & Goldstein, G. (2011). Understory bamboo flowering provides a very narrow light window of opportunity for canopy-tree recruitment in a neotropical forest of Misiones, Argentina. Forest Ecology and Management. 262(8): 1360-1369. Muller, L. (1996). Vascular bundle arrangement, an aid to bamboo recognition. American Bamboo Society Newsletter. 17(6): 6-9. Nobel, P. S. (1991). Physiochemical and environmental plant physiology. 4th ed. San Diego, 635: Academic Press.. Oren, R., Sperry, J. S., Katul, G. G., Pataki, D. E., Ewers, B. E., Phillips, N., & Schafer, K. V. R. (1999). Survey and synthesis of intra‐and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22(12), 1515-1526. Pcarson, A. K., Pearson, 0. P. & Gomez, I. A. (1994). Biology of the bamboo Chusquea culeou (Poaceae: Bambusoideae) in southern Argentina. Vegetatio 111, 93-126. QiZan, W., QiuFang, X., PeiKun, J., & Hua, Q. (2009). DGGE analysis of PCR of 16S rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by Phyllostachy pubescens in Tianmu Mountain Nature Reserve. Acta Pedologica Sinica 46(4), 662-669. Peramaki, M. (2005). A physical analysis of sap flow dynamics in trees. Academic dissertation. The Finnish Society of Forest Science. Philip J.R., (1966). Plant water relations: some physical aspects. Annual Review of Plant Physiology 17, 245-268. Priestley, C.H.B. and R.J. Taylor, 1972. On the Assessment of Surface Heat Flux and Evaporation Using Large Scale Parameters. Mon. Weath. Rev. 100:81-92. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2005). Biology of plants. WH Freeman & Company. Roberts, S., Vertessy, R., & Grayson, R. (2001). Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management, 143(1), 153-161. Ruiz, P., Belcher M., Fu B.M., Yang X. (2003). Forestry, poverty, and rural development: perspectives from the bamboo subsector. In: Hyde, William F., Jintao Xu and Belcher, B. (eds.). China's forests: global lessons from market reforms: 151-176. Resources for the Future and CIFOR, Washington, DC. Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological modelling, 42(2), 125-154. Saha, S., Holbrook, N. M., Montti, L., Goldstein, G., & Cardinot, G. K. (2009). Water relations of Chusquea ramosissima and Merostachys claussenii in Iguazu National Park, Argentina. Plant Physiology, 149(4), 1992-1999. Sato, T., Oda, T., Igarashi, Y., Suzuki, M., & Uchiyama, Y. (2012). Circumferential sap flow variation in the trunks of Japanese cedar and cypress trees growing on a steep slope. Hydrological Research Letters, 6(0), 104-108. Schulze, E. D., Kelliher, F. M., Korner, C., Lloyd, J., & Leuning, R. (1994). Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics. 25:629-660. Suzuki, S. & Nakagoshi, N. (2008). Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23: 641–647. Tateishi, M., Kumagai, T. O., Utsumi, Y., Umebayashi, T., Shiiba, Y., Inoue, Kaji, K., Cho, K. & Otsuki, K. (2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees, 22(1), 23-30. Thornthwaite, C. W., & Holzman, B. (1939). The determination of evaporation from land and water surfaces. Monthly Weather Review, 67(1), 4-11. Thornthwaite, C.W. (1948). An Approach Toward a Rational Classification of Climate. Geograph. Rev. 38 (1):55-94. Thornthwaite, C.W., Mather, J.R (1951). The Role of Evapotranspiration in Climate. Theoretical and Applied Climatology.;3(1):16-39. Torii, A. (2003). Bamboo forests as invaders to surrounded secondary forests. J Jpn Soc Reveg Tech, 28, 412-416. Touyama, Y., Yamamoto, T., & Nakagoshi, N. (1998). Myrmecofaunal change with bamboo invasion into broadleaf forests. Journal of Forest Research. 3(3): 155-159. Tsuruta, K., Kume, T., Komatsu, H., Higashi, N., Umebayashi, T., Kumagai, T. O., & Otsuki, K. (2010). Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 15(6), 398-403. Uchimura, E. (1978). Ecological studies on cultivation of tropical bamboo forest in the Philippines. Bull. For. For. Prod. Res. Inst. 301: 79-1 18. Uchimura, E., (1994). Invitation to Bamboos: Wonder of Biology. Kenseisha, Tokyo (in Japanese). Ueda, K., (1979). Bamboos and Japanese. NHK Shuppan, Tokyo (in Japanese). Umeki, K. (1995). Modeling the relationship between the asymmetry in crown display and local environment. Ecological Modelling, 82(1), 11-20. Van Bavel, C. H. M. (1966). Potential evaporation: The combination concept and its experimental verification. Water Resources Research, 2(3), 455-467. van den Honert T.H. (1948). Water transport in plants as a catenary process. Discussions Faraday Soc. 3, 146-153. Vertessy, R. A., Benyon, R. G., O'sullivan, S. K., & Gribben, P. R. (1995). Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15(9), 559-567. Wang, F., Tian, X., Ding, Y., Wan, X., & Tyree, M. T. (2011). A survey of root pressure in 53 Asian species of bamboo. Annals of forest science, 68(4), 783-791. Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., & Wullschleger, S. D. (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology,106(2), 153-168. Wullschleger, S. D., Meinzer, F. C., & Vertessy, R. A. (1998). A review of whole-plant water use studies in tree. Tree physiology, 18(8-9), 499-512. Yamamoto, S. (1988). Seedling recruitment of Chamaecyparis obtusa and Sciadopitys verticillata in different microcnvironments in an oldgrowth Sciadopirys verficillafa forest. Bot. Mag., Tokyo 101: 61-71. Yamamoto, S. (1992) The gap theory in-forest dynamics. Bot. Mag., Tokyo 105: 375-383. Yang, S. J., Zhang, Y. J., Sun, M., Goldstein, G., & Cao, K. F. (2012). Recovery of diurnal depression of leaf hydraulic conductance in a subtropical woody bamboo species: embolism refilling by nocturnal root pressure. Tree physiology. 2(4): 414-422. Yiping, L., Yanxia, L., Buckingham, K., Henley, G., & Guomo, Z. (2010). Bamboo and climate change mitigation (No. 32). INBAR, Technical report. Zhao H. L., Zhao B. Y. and Zhu Z. Q (2003). Species and distribution of mountain bamboos in Shennongjia, Central China. Journal of Forestry Research. 14(1): 35-38. Zhao, P., Mei, T. T., Ni, G. Y., & Zeng, X. P. (2012). Application of thermal dissipation sap flow measuring system in investigating bamboo transpiration: Problems and solutions. Chinese Journal of Ecology, 1, 031. Zhou, B. Z., Fu M. Y., Xie J. Z., Yang X. S., & Li Z. C. (2005). Ecological functions of bamboo forest: research and application. Journal of Forestry Research, 16(2), 143-147. 杜大治(Tu Ta-Chih), 王亞男(Wang Ya-Nan), & 蕭英倫(Shiau Eng-Lun). (2003). 孟宗竹在不同冠層二氧化碳固定效益之研究Efficiency of carbon dioxide fixation by Phyllostachys pubescens.臺灣大學生物資源暨農學院實驗林研究報告.17(3): 187-194. 劉蔚漪(Liu Wei-yi), 范少輝(Fan Shao-Hui), 蘇文會(Su Wen-Hui), 劉廣路(Liu Guang-Lu), & 余林(Yu Lin). (2011). 竹林不同界面水文效應研究 Research on hydrological effect in different interfaces under bamboo forests. 浙江農林大學學报 ISTIC, 28(3). 邱祈榮(Chiou Chyi-Rong), 陳財輝(Chen Tsai-Huei), 林裕仁(Lin Yu-Jen), 楊鄢如(Yang Yen-Ju), & 林欣德(Lin Shin-Der). (2009). 台灣北部地區竹林資源分布及變遷之研究 Distribution and Change Analysis of Bamboo Forest in Northern Taiwan. 中華林學季刊, 42(1), 89-105. 陳建璋(Chen Jian-Zhang), 邱祈榮(Chiou Chyi-Rong), 王亞男(Wang Ya-Nan), & 梁治文(Leong Chi-Man). (2004). 應用地理資訊系統技術於造林地之管理-以台大實驗林溪頭營林區為例 Application of geographic information system on plantation management - An llustration of Chi-Tou tract. 臺灣大學生物資源暨農學院實驗林研究報告,18(2), 51-64. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60807 | - |
dc.description.abstract | 近五十年亞洲竹林不斷地擴散。無論是天然或人為因素造成的,此現象導致原本的植被會被竹林替換。至今科學界缺乏足夠的相關研究,使得難以判斷竹林替換其他森林如何影響水文循環。「蒸散」為水文循環當中很重要的一環,因此本研究主要目的為多了解竹林之蒸散特性。我們便 (1) 由樹液流速的觀測而推測溪頭 (台灣) 一片孟宗竹林一年的蒸散速率、(2) 與另外二片森林的蒸散比較 (一為附近的柳杉林、二為日本福岡的孟宗竹林)、(3) 最後我們進一步探討環境因子與生理因素對竹林蒸散的影響的角色。本研究利用Granier熱消散探針法觀測二十二根竹子,再由個體觀測的結果放大尺度到整片林分的蒸散。並且我們最後利用一個冠層氣孔導度的模擬,來評估環境因子及竹子生理對蒸散的影響。結果顯示竹幹段面樹液流速的方向變異較小,但個體變異較明顯。另外,雖顯示同樣的季節趨勢,溪頭竹林一年的蒸散量比附近的柳杉林大快三倍。但我們亦發現溪頭竹林的蒸散量比日本福岡少,且二片林分由於不同氣候條件而顯示不同季節變化。最後,由二片竹林的冠層導度之比較,可推測VPD與植物生理為影響竹子蒸散的主要因素。 | zh_TW |
dc.description.abstract | Bamboo forests are expanding rapidly in Asian countries since the past 50 years. Whether natural or artificial, this expansion involves the replacement of other vegetation types by bamboos. Nevertheless, the impacts this will have on the water cycle are still not well understand. Transpiration being one of the most important part of the water cycle, we aimed to further understand the characteristics of the transpiration of a Moso bamboo forest located in the mountainous area of Xitou, Taiwan. To this end, (1) we estimated the annual transpiration rate of a Moso bamboo forest with assessing effects of variations in sap flow on individual and stand scale transpiration estimates, (2) compared our results with a coniferous forest and with a Japanese Moso bamboo stand, and (3) modeled the canopy conductance to deepen our understandings of the particularities of the Taiwanese and Japanese bamboo stands. We used Granier thermal dissipation probe method to measure the sap flow velocity of 22 culms, and then scale-up the results to obtain the transpiration rate of the whole stand. We used a canopy conductance model to evaluate the importance of meteorological and physiological parameters on the bamboos transpiration. The results showed small circumferential variations but relatively important individual variations in sap flow velocity. The annual transpiration of the bamboo stand we studied in Xitou was almost three times higher than the transpiration of the cedar stand, even if the seasonal variation trend was similar for the two stands. On the other hand, the transpiration of bamboos in Xitou was smaller than the Fukuoka bamboo stand, with in addition different seasonal trends. We concluded that VPD and physiological factors influenced significantly the transpiration behavior of bamboos from the same species. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:31:03Z (GMT). No. of bitstreams: 1 ntu-102-R00625057-1.pdf: 6315365 bytes, checksum: e5da785bdc3bb6f41114ef1d5896b963 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………………………………………………i
誌謝…………………………………………………………………………………………………………………………………ii 中文摘要………………………………………………………………………………………………………………………iii 英文摘要…………………………………………………………………………………………………………………………iv Chapter 1 Introduction………………………………………………………………………………6 Chapter 2 Literature Review………………………………………………………………11 2.1. Bamboos………………………………………………………………………………………………………11 2.2. Transpiration………………………………………………………………………………………14 2.3. Canopy conductance…………………………………………………………………………15 2.4. Sap flow measurement……………………………………………………………………17 2.5. Relationship between sap flow, transpiration and sapwood area………………………………………………………………………………………………………18 2.6. Circumferential variations……………………………………………………19 2.7. Sap flow and ageing………………………………………………………………………20 2.8. Cloud forest transpiration……………………………………………………22 Chapter 3 Materials and Methods……………………………………………………23 3.1. Study site and stand characteristics…………………………23 3.2. Measurements…………………………………………………………………………………………23 3.2.1. Sap flow measurements: Granier sensors………………23 3.2.2. Determination of culm age…………………………………………………25 3.2.3. Meteorological measurements……………………………………………26 3.3. Data analysis………………………………………………………………………………………27 3.3.1. Conductive stem area measurements……………………………27 3.3.2 Circumferential variations in V……………………………………27 3.3.3. Stand-scale transpiration E……………………………………………28 3.3.4. Transpiration estimates in the Japanese cedar stand in Xitou, Taiwan……………………………………………………………………………………………29 3.3.5. Transpiration estimates in the Moso bamboo stand in Fukuoka, Japan…………………………………………………………………………………………………31 3.3.6. Canopy conductance……………………………………………………………………31 Chapter 4 Results…………………………………………………………………………………………34 4.1. Meteorological conditions………………………………………………………34 4.2. Determination of culm age………………………………………………………34 4.3. Sap flow observations…………………………………………………………………35 4.3.1. Conductive area……………………………………………………………………………35 4.3.2. Circumferential variations in sap flow………………35 4.3.3. Individual variation of sap flow………………………………37 4.4. Characteristics of the Stand-scale transpiration E………40 4.4.1. Seasonal variations…………………………………………………………………40 4.4.2. Comparison with the Japanese Cedar stand…………40 4.4.3. Comparison with the Moso bamboo stand of Fukuoka, Japan…………………………………………………………………………………………………………………………42 4.5. Canopy conductance…………………………………………………………………………44 Chapter 5 Discussion…………………………………………………………………………………46 5.1. Sap flow observation……………………………………………………………………46 5.2. Circumferential variations……………………………………………………46 5.3. Individual-to-individual variation of sap flow……………47 5.4. Differences with the Japanese cedar stand……………48 5.5. Differences with the Moso bamboo stand of Fukuoka……50 Chapter 6 Conclusion…………………………………………………………………………………51 Chapter 7 Figures and tables……………………………………………………………54 Reference………………………………………………………………………………………………………………87 | |
dc.language.iso | en | |
dc.title | 利用樹液流觀測探討臺灣孟宗竹林之蒸散特性 | zh_TW |
dc.title | Study on Transpiration in a Taiwanese Moso Bamboo Forest using Sap Flow Measurement | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張世杰(Shih-Jie Zhang),小松光(Hikaru Komatsu),梁偉立(Wei-Li Liang) | |
dc.subject.keyword | 竹林,蒸散,樹液流速, | zh_TW |
dc.subject.keyword | bamboo forest,transpiration,sap flow, | en |
dc.relation.page | 92 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。