請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60806完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林浩雄(Hao-Hsiung Lin) | |
| dc.contributor.author | Yu-Chi Chang | en |
| dc.contributor.author | 張聿騏 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:31:00Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2013-08-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-14 | |
| dc.identifier.citation | [1] D. J. Friedman, and J. M. Olson, “Analysis of Ge junction for GaInP/GaAs/Ge three-junction solar cell, ” Prog. Photovoltaics, 9, 179, 2001.
[2] P. H. Wu, Y. K. Su, I. L. Chen, S. F. Chen, C. H. Chiou, S. H. Guo, J. T. Hsu, and W. R. Chen, “Research of surface morphology in Ga(In)As epilayers on Ge grown by MOVPE for multi-junction solar cells, ” J. Cryst. Growth, vol. 298, 767 2007. [3] G. Brammertz, Y. Mols, S. Degroote, V. Motsnyi, and M. Leys, “Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates, ” J. Appl. Phys., vol. 99, 093514, 2006. [4] W. He, S. L. Lu, J. R. Dong, Y. M. Zhao, X. Y. Ren, K. L. Xiong, B. Li, H. Yang, H. M. Zhu, X. Y. Chen, and X. Kong, “Structural and optical properties of GaInP grown on germanium by metal-organic chemical vapor deposition, ” Appl. Phys. Lett., vol. 97, 121909, 2010. [5] C. Yang, S. Lee, K. W. Shin, S. Oh, D. Moon, S. D. Kim, Y. W. Kim, C. Z. kim, W. k. Park, W. J. Choi, J. Park, and E. Yoon, “Characterization of deep levels in GaInP on Ge and Ge-on-Si substrates by photoluminescence and cathodoluminescence, ” J. Cryst. Growth, vol. 370, pp. 168-172, 2013. [6] C. Yang, S. Lee, K. W. Shin, S. Oh, J. Park, C. Z. Kim, W. K. Park, S. K. Ha, W. J. Choi, and E. Yoon, “Growth of Si-doped GaInP on Ge-on-Si substrates and its photoluminescence characteristics, ” Appl. Phys. Lett., vol. 99, 091904, 2011. [7] W. He, S. L. Lu, D. S. Jiang, J. R. Dong, A. Tackeuchi, and H. Yang, “Photoluminescence and Raman studies on Ge-based complexes in Si-doped GaInP epilayers grown on Germanium, ” J. Appl. Phys., vol.112, 023509, 2012. [8] J. Bettini, M. M. G. de Carvalho, M. A. Cotta, D. Ugarte, “ Role of V/III ratio on atomic ordering and surface morphology of InGaP layers grown by chemical beam epitaxy, ” Surface Science, vol. 540, pp. 129-135, 2003. [9] G. R. Moriarty, M. Kildemo, J. T. Beechinor, M. Murtagh, P. V. Kelly, G. M. Crean and S. W. Bland, “Optical and structural properties of InGaP heterostructures, ” Thin Solid Films, vol. 364, pp. 244-248, 2000. [10] M. Kondow, H. Kakibayashi, S. Minagawa, Y. Inoue, T. Nishino and Y. Hamakawa, “Influence of growth temperature on crystalline structure in Ga 0.5In0.5P grown by organometallic vapor phase epitaxy, ” Appl. Phys. Lett., vol. 53, pp. 2053-2055, 1988. [11] S. H. Wei, D. B. Laks and A. Zunger, “Dependence of the optical properties of semiconductor alloys on the degre of long-range order, ” Appl. Phys. Lett., vol. 62, pp. 1937-1939, 1993. [12] M. Kondow, S. Minagawa, “Study on photoluminescence and Raman scattering of GaInP and AlInP grown by organometallic vaporphase epitaxy, ” J. Appl. Phys., vol 64, pp. 793-796, 1988. [13] J. K. Shurtleff, R. T. Lee, C. M. Fetzer, and G. B. Stringfellow, “Band-gap control of GaInP using Sb as a surfactant, ”Appl. Phys. Lett., vol. 75, pp. 1914-1916, 1999. [14] S. Minagawa, Y. Ishitani, T. Tanaka, and S. Kawanaka, “Heavy doping of silicon into Ga0.5In0.5P at low temperatures in organometallic vapor phase epitaxy, ” J. Cryst. Growth, vol. 152, pp. 251-255, 1995. [15] L. C. Su, I. H. Ho, N. Kobayashi, G. B. Stringfellow, “Order/disorder heterostructure in Ga0.5In0.5P with ∆Eg = 160 meV, ” J. Cryst. Growth, vol. 145, pp. 140-146, 1994. [16] A. Krost, N. Esser, H. Selber, J. Christen, W. Richter, D. Bimberg, L. C. Su, and G. B. Stringfellow, “Identification of ordered and disordered Ga0.51In0.49P domain by spatially resolved luminescence and Raman spectroscopy, ” J. Vac. Sci. Technol. B, vol. 12, No.4, pp. 2558-2561, 1994. [17] A. Mascarenhas, “Spontaneous ordering in semiconductor alloys, ” Kluwer Academic/Plenum Publishers , 2002. [18] A. Gomyo, K. Kobayashi, S. Kawata, I. Hino, and T. Suzuki, “Studies of GaxIn1-xP layers grown by metalorganic vapor phase epitaxy effects of V/III ratio and grown temperature, ” J. Cryst. Growth, vol. 77, pp. 367-373, 1986. [19] G. Irmer, “Local crystal orientation in III-V semiconductors : polarization selective Raman microprobe measurements, ” J. Appl. Phys., vol. 76, pp. 7768-7773, 1994. [20] F. Alsina, N. Mestres, J. Pascual, C. Geng, P. Ernst, and F. Scholz, “Raman scattering in single-variant spontaneously ordered GaInP 2, ” Phys. Rev. B., vol. 53, pp. 12 994, 1996. [21] H. M. Cheong, A. Mascarenhas, P. Ernst, and C. Geng, “Effects of spontaneous ordering on Raman spectra of GaInP 2, ” Phys. Rev. B., vol. 56, pp. 1882, 1997. [22] N. Mestres, F. Alsina, J. Pascual, J. M. Bluet, J. Camassel, C. Geng, and F. Scholz, “Edge-on micro-Raman assessment of trigonal modes in partially ordered GaInP2, ” Phys. Rev. B., vol. 24, pp. 17 754, 1996. [23] H. M. Cheong, F. Alsina, A. Mascarenhas, J. F. Geisz, and J. M. Olson, “Phonon modes in spontaneously ordered GaInP 2 studied by micro-Raman scattering measurements, ” Phys. Rev. B., vol. 56, pp. 1888, 1997. [24] J. H. Parker, JR, D. W. Feldman, and M. Ashkin, “Raman scattering by silicon and Germanium, ” Phys. Rev. vol.155, pp. 712, 1967. [25] D. M. Eagles, “Optical absorption and recombination radiation in semiconductors due to transitions between hydrogen-like acceptor impurity levels and the conduction band, ” J. Phys. Chem. Solids, vol. 16, pp.76-83, 1960. [26] S. H. Wei, and, A. Zunger, “Fingerprints of CuPt ordering in III-V semiconductor alloys : Valence-band splittings, band-gap reduction, and x-ray structure facto, ” Phys. Rev. B. vol.57, pp. 8983. [27] K. Uchid, P. Y. Yu, N. Noto, Z. L. Weber, E. R. Weber, “Comparison between photoluminescence and Raman scattering in disordered and ordered alloys of GaInP, ” Philos. Mag. B., vol. 70, pp. 453-466, 1994. [28] A. M. Mintairov, B. N. Zvonkov, T. S. Babushkina, I. G. Malkina, and Y. N. Safyanov, Fiz. Tverd. Tela., vol. 37, pp. 3607. 1995. [29] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys, ” J. Appl. Phys., vol. 89, pp. 5815, 2001. [30] O. Madelung, “Semiconductors — basic data, 2nd ed., ” Springer, 1996. [31] H. Asai, K. Oe, “Energy bandgap shift with elastic strain in GaxIn1−xP epitaxial layers on (001) GaAs substrates, ” J. Appl. Phys. vol. 54, pp. 2052 -2056, 1983. [32] A. Hassine, J. Sapriel, P. L. Berre, M. A. D. F. Poisson, F. Alexandre, M. Quillec, “Superlattice effects induced by atomic ordering on GaxIn1-xP Raman modes, ” Phys. Rev. B., vol. 54, pp. 2728, 1996. [33] T. Kato, T. Matsumoto, and T. Ishida, “Raman spectral behavior of In1-xGaxP(0<x<1), ” Jap. J. Appl. Phys., vol. 27, pp. 983-986, 1988. [34] P. Ernst, C. Geng, F. Scholz, H. Schweizer, “Ordering in GaInP2 studied by optical spectroscopy, ” Phys. stat. sol(b)., vol. 193, pp. 213, 1996. [35] T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. hino, “Band-gap energy anomaly and sublattice ordering in GaInP and AlGaInP grown by metalorganic vapor phase epitaxy, ” Jap. J. Appl. Phys., vol. 27, pp. 2098-2106, 1988. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60806 | - |
| dc.description.abstract | 本論文研究以有機金屬化學氣相沉積法成長於鍺基板以及砷化鎵基板的有序排列磷化銦鎵之光學特性。第一部分探討成長於鍺基板的磷化銦鎵光激螢光結果出現雙波峰(同時出現不同能量之螢光訊號)的原因,我們利用蝕刻配合低溫與室溫光激螢光頻譜以及室溫微光譜拉曼散射量測,證明不同能量的光激螢光訊號來自磊晶層上層與下層有序排列程度不同引起。另外,我們也同時在室溫光激螢光頻譜中發現深層放光(deep level transition)的現象,推測是由於基板的鍺原子擴散至磊晶層取代三族原子後與三族空缺(vacancy)合成化合物而形成深層缺陷所導致。
我們經由室溫的光激螢光頻譜與X光繞射頻譜以理論公式計算出樣品的有序排列程度。並由分別代表隨機排列及有序排列對稱的T_d及C_3v拉曼選擇定律中,選擇只有純C_3v變化影響之特定極化Z(x^' x^')Z ‾與Z(y^' y^')Z ‾方向之拉曼量測觀察到GaP-like LO強度與InP-like LO強度比值與樣品有序排列程度呈現正比關係。 我們選定有序排列程度最高的樣品,由其TED繞射圖訂出樣品有序排列的方向沿著[11 ‾1]方向。以其結果結合極化拉曼頻譜觀察到當雷射極化方向與有序排列方向位於同一平面時,354 cm-1之強度最強。而雷射極化方向與有序排列方向垂直時354 cm-1消失,說明此新模態確實與有序排列相關。 | zh_TW |
| dc.description.abstract | This thesis investigate the optical characteristics of ordered InGaP/Ge and InGaP/GaAs grown by metal-organic chemical vapor epitaxy.In the first part we discuss the origins of dual PL peak in the InGaP/Ge by etching the half of the sample and measuring PL spectroscopy and Raman scattering. We indicate that the different energy PL peaks are attributed to different degree of order in the upper and lower epilayer. The difference of degree of order in epilayer is due to Ge diffusion from the substrate into the InGaP at the heterointerface between the
two materials. In addition, we also observe the broaden deep level transitions in room temperature PL spectrums because of the Ge-based complex defeat within the InGaP near the InGaP/Ge heterointerface. In the second part, the degree of order of every samples has been calculated by using band gap determined from room temperature PL and the lattice mismatched determined from XRD. From the Raman selection rule of zinblende structure(T_d symmetry)presents the random InGaP alloy and Cu-Pt structure(C_3v symmetry) presents the ordered InGaP, we choose the specific Raman polarization configuration, Z(x^' x^')Z ‾ and Z(y^' y^')Z ‾, which only varied by C_3v characteristics and are independent on the T_d characteristics. The well correlations are observed between the degree of order and intensity ratio of GaP-like LO mode and InP-like LO mode in Z(x^' x^')Z ‾ and Z(y^' y^')Z ‾ polarization configurations. We confirm the ordering direction of the highest degree of order sample along the [11 ‾1] direction by TED pattern. From the Raman scattering spectrum of the highest sample we observe that the extra Raman mode 354 cm-1 induced by the ordering effect vanish while the polarization of incident laser are perpendicular to the ordering direction and strengthen while the polarization of incident laser lie in the same plane with ordering direction. This indicate that the extra Raman mode relate to the ordering structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:31:00Z (GMT). No. of bitstreams: 1 ntu-102-R00943110-1.pdf: 4003519 bytes, checksum: fc7c0e0a3dfbc0f97f8fb8d41ba129f0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III Abstract IV 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 序論 1.1 背景及研究動機 1 1.2 Cu-Pt 有序排列 2 1.3 Cu-Pt有序排列造成之聲子變化 6 1.4 論文內容概述 9 第二章 實驗架構與量測方法 2.1樣品成長條件 10 2.2 拉曼散射(Raman scattering) 11 2.2.1 微光譜拉曼散射系統 (Micro-Raman scattering spectroscopy) 11 2.2.2 雷射光功率密度(power density)與進光狹縫寬度(slit size)選擇 13 2.2.3樣品擺設與極化校正 20 2.3激發螢光量測(Photoluminescene) 25 2.3.1實驗系統設置 25 第三章 磷化銦鎵/鍺基板 實驗結果與討論 3.1樣品#1光學量測分析 29 3.1.1樣品#1光激發螢光頻譜分析 29 3.1.2樣品#1拉曼散射頻譜分析 35 3.2樣品#2光學量測分析 47 3.2.1樣品#2光激發螢光頻譜分析 47 3.2.2樣品#2拉曼散射頻譜分析 49 3.2.3樣品#2有序排列方向判定 51 第四章 磷化銦鎵材料有序排列程度與極化拉曼頻譜之關聯 4.1有序排列程度(degree of order) 56 4.2磷化銦鎵/砷化鎵基板拉曼頻譜分析 62 4.3有序排列程度與拉曼頻譜的關聯 66 第五章 結論 71 參考文獻 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 磷化銦鎵 | zh_TW |
| dc.subject | 鍺基板 | zh_TW |
| dc.subject | 砷化鎵基板 | zh_TW |
| dc.subject | 光激螢光 | zh_TW |
| dc.subject | 拉曼 | zh_TW |
| dc.subject | PL | en |
| dc.subject | Ge | en |
| dc.subject | GaAs | en |
| dc.subject | Raman | en |
| dc.subject | InGaP | en |
| dc.title | 成長在鍺基板及砷化鎵基板之有序排列磷化銦鎵光學特性研究 | zh_TW |
| dc.title | Studies on the Optical Properties of Ordered InGaP/Ge and InGaP/GaAs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃朝興,蔡世貞,林光儀 | |
| dc.subject.keyword | 磷化銦鎵,鍺基板,砷化鎵基板,光激螢光,拉曼, | zh_TW |
| dc.subject.keyword | InGaP,Ge,GaAs,PL,Raman, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
