請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60799
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 沈偉強(Shen Wei-chiang) | |
dc.contributor.author | Bi-Hua Yang | en |
dc.contributor.author | 楊碧華 | zh_TW |
dc.date.accessioned | 2021-06-16T10:30:42Z | - |
dc.date.available | 2023-08-13 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | Agerbirk, N., and Olsen, C.E. 2012. Glucosinolate structures in evolution. Phytochemistry 77:16-45.
Andersson, D., Chakrabarty, R., Bejai, S., Zhang, J., Rask, L., and Meijer, J. 2009. Myrosinases from root and leaves of Arabidopsis thaliana have different catalytic properties. Phytochemistry 70:1345-1354. Andreasson, E., and Jorgensen, L.B. 2003. Chapter four Localization of plant myrosinases and glucosinolates. Pages 79-99 in: Recent Advances in Phytochemistry, John, T.R., ed. Elsevier. Bednarek, P., Piślewska-Bednarek, M., Svatoš, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A. and Chulze-Lefert, P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101-106. Bones, A.M., and Rossiter, J.T. 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97:194-208. Bridges, M., Jones, A.M.E., Bones, A.M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Karapapa, V.K., Watts, N., and Rossiter, J.T. 2002. Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society of London. Series B: Biological Sciences 269:187-191. Burmeister, W.P., Cottaz, S., Rollin, P., Vasella, A.a., and Henrissat, B. 2000. High resolution x-ray crystallography shows that ascorbate is a cofactor for myrosinase and substitutes for the function of the catalytic base. J. Biol. Chem. 275:39385-39393. Burmeister, W.P., Cottaz, S., Driguez, H., Iori, R., Palmieri, S., and Henrissat, B. 1997. The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase. Structure 5:663-675. Burow, M., Bergner, A., Gershenzon, J., and Wittstock, U. 2007. Glucosinolate hydrolysis in Lepidium sativum––identification of the thiocyanate-forming protein. Plant Mol. Biol. 63:49-61. Bussy, A. 1840. Sur la formation de l`huile essentielle de moutarde. J. Pharm. 27:464-471. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 37:D233-D238. Chung, W.C., Huang, J.W., Huang, H.C., and Jen, J.F. 2003. Control, by Brassica seed pomace combined with Pseudomonas boreopolis, of damping-off of watermelon caused by Pythium sp. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie 25:285-294. Chung, W.C., Huang, H.C., Chiang, B.T., and Huang, J.W. 2005. Inhibition of soil-borne plant pathogens by the treatment of sinigrin and myrosinases released from reconstructed Escherichia coli and Pichia pastoris. Biocontrol Science and Technology 15:455-465. Clay, N.K., Adio, A.M., Denoux, C., Jander, G., and Ausubel, F.M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95-101. Durham, P.L., and Poulton, J.E. 1989. Effect of castanospermine and related polyhydroxyalkaloids on purified myrosinase from Lepidium sativum Seedlings. Plant Physiology 90:48-52. Fahey, J.W., Zalcmann, A.T., and Talalay, P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. Francis, F. 1999. Consequences evolutives des relations entre le puceron et son predateur en presence de substances allelochimiques chez les Brassicaceae. Annales ANPP 2:503-510. Guo, R.F., Yuan, G.F., and Wang, Q.M. 2013. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ. Sci. B 14:124-131. Halkier, B.A., and Gershenzon, J. 2006. Biology and biochemistry of glucosinolates. Annual Review of Plant Biology 57:303-333. Hara, M., Fujii, Y., Sasada, Y., and Kuboi, T. 2000. cDNA cloning of radish (Raphanus sativus) myrosinase and tissue-specific expression in root. Plant and Cell Physiology 41:1102-1109. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., and Davies, G. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proceedings of the National Academy of Sciences of the United States of America 92:7090-7094. Hopkins, R.J., van Dam, N.M., and van Loon, J.J.A. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology 54:57-83. Husebye, H., Arzt, S., Burmeister, W.P., Hartel, F.V., Brandt, A., Rossiter, J.T., and Bones, A.M. 2005. Crystal structure at 1.1 A resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to β-glucosidases. Insect Biochemistry and Molecular Biology 35:1311-1320. Jones, A.M.E., Winge, P., Bones, A.M., Cole, R., and Rossiter, J.T. 2002. Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochemistry and Molecular Biology 32:275-284. Ketudat Cairns, J., and Esen, A. 2010. β-Glucosidases. Cell. Mol. Life Sci. 67:3389-3405. Kim, J.H., Lee, B.W., Schroeder, F.C., and Jander, G. 2008. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). The Plant Journal 54:1015-1026. Kissen, R., and Bones, A.M. 2009. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana. Journal of Biological Chemistry 284:12057-12070. Lonnerdal, B., and Janson, J.-C. 1973. Studies on myrosinases. II. Purification and characterization of a myrosinase from rapeseed (Brassica napus L.). Biochimica et Biophysica Acta (BBA) - Enzymology 315:421-429. Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D.J., and Gershenzon, J. 2001. The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. The Plant Cell Online 13:2793-2807. Lenman, M., Falk, A., Rodin, J., Hoglund, A.S., Ek, B., and Rask, L. 1993. Differential expression of myrosinase gene families. Plant Physiology 103:703-711. MacGibbon, D.B., and Allison, R.M. 1968. Glucosinolate system in the aphid Brevicoryne brassicae. New Zealand Journal of Science 11:444-446. Machlin, S., Mitchell-Olds, T., and Bradley, D. 1993. Sequence of a Brassica campestris myrosinase gene. Plant Physiol. 102:1359–1360. Mithen, R.F., Dekker, M., Verkerk, R., Rabot, S., and Johnson, I.T. 2000. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. Journal of the Science of Food and Agriculture 80:967-984. Oginsky, E.L., Stein, A.E., and Greer, M.A. 1965. Myrosinase activity in bacteria as demonstrated by the conversion of progoitrin to goitrin. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.) 119:360-364. Palop, M.L., Smiths, J.P., and Tenbrink, B. 1995. Degradation of sinigrin by Lactobacillus agilis strain R16. International Journal of Food Microbiology 26:219-229. Park, S.Y., Barton, M., and Pendleton, P. 2012. Controlled release of AITC for bacteria growth management. Food Control 23:7-7. Pedras, M.S.C., and Hossain, S. 2011. Interaction of cruciferous phytoanticipins with plant fungal pathogens: Indole glucosinolates are not metabolized but the corresponding desulfo-derivatives and nitriles are. Phytochemistry 72:2308-2316. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., and Cottrell, J.S. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551-3567. Pryor, D.E., Walker, J.C., and Stahmann, M.A. 1940. Toxicity of AITC vapor to certain fungi. American Journal of Botany 27:30-38. Ratzka, A., Vogel, H., Kliebenstein, D.J., Mitchell-Olds, T., and Kroymann, J. 2002. Disarming the mustard oil bomb. Proceedings of the National Academy of Sciences 99:11223-11228. Reese, E.T., Clapp, R.C., and Mandels, M. 1958. A thioglucosidase in fungi. Archives of Biochemistry and Biophysics 75:228-242. Sakorn, P., Rakariyatham, N., Niamsup, H., and Nongkunsarn, P. 2002. Rapid detection of myrosinase-producing fungi: a plate method based on opaque barium sulphate formation. World Journal of Microbiology & Biotechnology 18:73-74. Sakorn, P., Rakariyatham, N., Niamsup, H. and Kovitaya, P. 1999. Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture. Science Asia 25:89-194. Sellam, A., Poupard, P., and Simoneau, P. 2006. Molecular cloning of AbGst1 encoding a glutathione transferase differentially expressed during exposure of Alternaria brassicicola to isothiocyanates. FEMS Microbiology Letters 258:241-249. Shikita, M., Fahey, J.W., Golden, T.R., Holtzclaw, W.D., and Talalay, P. 1999. An unusual case of 'uncompetitive activation' by ascorbic acid: purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochemical Journal 341:725-732. Stauber, E.J., Kuczka, P., van Ohlen, M., Vogt, B., Janowitz, T., Piotrowski, M., Beuerle, T., and Wittstock, U. 2012. Turning the ‘Mustard Oil Bomb’ into a ‘Cyanide Bomb’: Aromatic Glucosinolate Metabolism in a Specialist Insect Herbivore. PLoS ONE 7:e35545. Tani, N., Ohtsuru, M., and Hata, T. 1974. Isolation of myrosinase producing microorganism. Agric. Biol. Chem. 38:1617-1622. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5 : molecular evolutionary genetics analysis using maximum likehood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. Tierens, K.F.M.J., Thomma, B.P.H.J., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., Mauch-Mani, B., Cammue, B.P.A., and Broekaert, W.F. 2001. Study of the role of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to microbial pathogens. Plant Physiology 125:1688-1699. Wang, M., Sun, X., Tan, D., Gong, S., Meijer, J., and Zhang, J. 2009. The two non-functional myrosinase genes TGG3 and TGG6 in Arabidopsis are expressed predominantly in pollen. Plant Science 177:371-375. Wang, Q., and Withers, S.G. 1995. Substrate-assisted catalysis in glycosidases. Journal of the American Chemical Society 117:10137-10138. Wheat, C.W., Vogel, H., Wittstock, U., Braby, M.F., Underwood, D., and Mitchell-Olds, T. 2007. The genetic basis of a plant–insect coevolutionary key innovation. Proceedings of the National Academy of Sciences 104:20427-20431. Wittstock, U., Agerbirk, N., Stauber, E.J., Olsen, C.E., Hippler, M., Mitchell-Olds, T., Gershenzon, J., and Vogel, H. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proceedings of the National Academy of Sciences of the United States of America 101:4859-4864. Xu, Z.W., Escamilla-Trevino, L.L., Zeng, L.H., Lalgondar, M., Bevan, D.R., Winkel, B.S.J., Mohamed, A., Cheng, C.L., Shih, M.C., Poulton, J.E., and Esen, A. 2004. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol. 55:343-367. Xue, J., Jorgensen, M., Pihlgren, U., and Rask, L. 1995. The myrosinase gene family in Arabidopsis thaliana: gene organization, expression and evolution. Plant Mol. Biol. 27:911-922. Zabala, M.d.T., Grant, M., Bones, A.M., Bennett, R., Lim, Y.S., Kissen, R., and Rossiter, J.T. 2005. Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry 66:859-867. Zhang, J., Pontoppidan, B., Xue, J., Rask, L., and Meijer, J. 2002. The third myrosinase gene TGG3 in Arabidopsis thaliana is a pseudogene specifically expressed in stamen and petal. Physiologia Plantarum 115:25-34. Zhang, Y. 2010. AITC as a cancer chemopreventive phytochemical. Molecular Nutrition & Food Research 54:127-135. Zhao, Z., Zhang, W., Stanley, B.A., and Assmann, S.M. 2008. Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. The Plant Cell Online 20:3210-3226. Zhou, C., Tokuhisa, J.G., Bevan, D.R., and Esen, A. 2012. Properties of β-thioglucoside hydrolases (TGG1 and TGG2) from leaves of Arabidopsis thaliana. Plant Science 191–192:82-92. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60799 | - |
dc.description.abstract | 硫配醣體-芥子酶 (glucosinolate-myrosinase)系統,利用水解硫配醣體產生具毒性的化學物質,作為植物的一種非專一性化學防禦機制。芥子酶活性主要存在於十字花科植物中,目前已有許多物種被報導具有芥子酶活性,然而僅在少數植物及蚜蟲發表芥子酶基因之選殖。本研究利用阿拉伯芥及蚜蟲的芥子酶基因之蛋白質序列,在甘藍黑斑病原菌 (A. brassicicola) 基因庫進行序列比對,得到3個候選基因:AB03581,AB00050及 AB10392。進一步分析芥子酶胺基酸序列的親緣關係,發現AB03581與AB10392與阿拉伯芥非典型芥子酶PEN2及蚜蟲芥子酶的親緣較為相近,而AB00050則位於芥子酶親緣類群之外。利用生物資訊學工具進行蛋白質結構模擬分析,AB03581和AB00050都具有與芥子酶酵素相似的 (α/β)8筒狀蛋白質結構。而AB10392序列上的缺失,則造成筒狀結構的缺陷,推測AB10392 不具有功能。在黑芥子硫酸鉀 (sinigrin) 誘導實驗發現,經6小時誘導後,AB03581基因的表現量上升30倍。進一步地,將AB03581基因進行大腸桿菌異源表現,純化出AB03581蛋白質,成功地測得芥子酶活性,並將AB03581命名為AbMyr1基因。將AbMyr1純化蛋白質系列稀釋成1-6 μg/μL,滴在含有鋇及黑芥子硫酸鉀的培養基中,3 μg/μL 以上的蛋白質濃度皆可造成白色的沉澱。同時亦發現,額外添加Zn2+ 可以促進蛋白質的活性,而添加抗敗血酸 (ascorbate) 則對酵素沒有影響。 | zh_TW |
dc.description.abstract | Glucosinolate-myrosinase system is a well-studied nonspecific chemical defense mechanism of plant by hydrolyzing glucosinolates to produce toxic substances. Myrosinase activities are widely found and studied in cruciferous plants, and also reported in some aphids, fungi, bacteria, and intestinal bacteria of mammals. However, myrosinase genes were identified only in plants and aphids. In this study, we utilized the sequences of Arabidopsis thaliana TGG gene family and PEN2, and Brevicoryne brassicae BMY1 protein to search the putative myrosinase genes in Alternaria brassicicola genome database. Three candidate genes including AB03581, AB00050 and AB10392 were identified. Phylogenetic analysis showed that AB03581 and AB10392 are more closely related to an atypical myrosinase PEN2 gene and aphid myrosinase BMY1 gene, whereas AB00050 fell out of the myrosinase major clade. Molecular modeling revealed that AB03581 and AB00050 were similar to other myrosinase proteins which display the (α/β)8-barrel structure when using protein structure simulation analysis. In contrast, due to truncation of N-terminal part, AB10392 lost the catalytic site of typical β-glucosidase, implying that AB10392 may be not functional. Gene expression studies showed that the expression level of AB03581 increased about 30 folds after 6 hours under sinigrin inductive condition. Finally, AB03581 gene was heterologously expressed in E. coli expression system and proteins were purified and shown to contain myrosinase activity and we therefore named the gene of A. brassicicola as AbMyr1. Serial dilutions of AbMYR1 purified protein from 1 to 6 μg/μL were spotted onto BSA plate and opaque precipitation was observed when the concentration was higher than 3 μg/μL at 37°C. Addition of Zn2+ enhanced the AbMyr1 enzymatic activity, whereas ascorbate showed no effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:42Z (GMT). No. of bitstreams: 1 ntu-102-R99633022-1.pdf: 2513544 bytes, checksum: 2826078cef0fc2800005aac1bf6e43da (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要 i
Abstract ii Abbreviations iv List of figures viii List of tables ix Appendix x Chapter I Introduction 1 1.1 Glucosinolate- myrosinase defense system in plant 1 1.1.1 Structure of glucosinolate 1 1.1.2 Myrosinase and their function roles 2 1.2 Myrosinase activity in other organisms 7 1.2.1 Insect 7 1.2.2 Microorganism 9 Chapter II Materials and Methods 11 2.1 Strain and growth conditions 11 2.2 Myrosinase candidate genes analysis 11 2.2.1 Characterization of myrosinase genes in A. brassicicola 11 2.2.2 Alignment and phylogenetic tree 11 2.3 Myrosinase induction 12 2.4 RNA isolation and RT-PCR 12 2.5 Real-time PCR analyses 13 2.6 Protein expression from reconstructed Escherichia coli 13 2.6.1 Stains, vectors, enzymes and reagents 13 2.6.2 Construction of the recombination expression vectors 14 2.6.3 Expression plasmid transformation 15 2.6.4 Expression of fusion protein in E. coli 15 2.6.5 Protein purification 16 2.6.6 SDS-PAGE and Western blot 16 2.6.7 Protein sequencing 17 2.6.8 Protein identification 18 2.7 Protein activity assay 18 2.7.1 Barium sinigrin agar plate assay 18 2.7.2 Gas Chromatography-Mass Spectrometry (GC-MS) 19 Chapter III Results 20 3.1 Myrosinase activity assay in Alternaria brassicicola 20 3.2 Identification of the putative myrosinase genes in A. brassicicola 20 3.3 Both AB03581 and AB00050 have conserved region for recognizing glucose ring but not AB10392 21 3.4 AB03581 gene expression highly association with the substrate sinigrin 23 3.5 Expression and purification of His tag fused AB03581 24 3.6 AB03581 protein activity assay 26 Chapter IV Discussions 28 Figures and tables 32 Appendix 54 References 58 | |
dc.language.iso | en | |
dc.title | 甘藍黑斑病菌芥子酶基因選殖與功能特性之分析 | zh_TW |
dc.title | Cloning and characterization of a gene encoding myrosinase in Alternaria brassicicola | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉瑞芬(Ruey-Fen Liou),王肇芬(Jaw-Fen Wang),楊健志(Chien-Chih Yang),呂廷璋(Ting-jang Lu) | |
dc.subject.keyword | 硫配醣體,芥子酶,甘藍黑斑病病原真菌,AbMyr1基因,蛋白質異源表現, | zh_TW |
dc.subject.keyword | glucosinolate,myrosinase,Alternaria brassicicola,AbMyr1 gene,heterologous protein expression, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。