Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60794
標題: 以插分整合移動平均自迴歸模型、類神經網路模型與離散小波轉換構成之時間序列混合模型效果評估
Evaluation of Hybrid Models using ARIMA, ANN, and DWT in Time Series Modeling
作者: Tsung-Lin Li
李宗霖
指導教授: 蔡政安(Chen-An Tsai)
關鍵字: 時間序列預測,混合模型,插分整合移動平均自迴歸模型,類神經網路,離散小波轉換,
Time series forecasting,Hybrid model,Autoregressive moving average model,Artificial neural network,Discrete wavelet transformation,
出版年 : 2020
學位: 碩士
摘要: 在現今不同研究領域中,時間序列預測是其中深具挑戰的項目。通過整合不同領域的技術,數個混合模型先後被提出。然而在前人研究中,即便混合模型的功效有經過驗證,卻未進行過嚴謹的統計檢定來檢視不同模型的差異。
本研究提出基於經驗法則的逐步式ANN模型架構方法和兩個由ARIMA、ANN及DWT構成的混合模型。通過模擬資料比較ARIMA、ANN、ARIMA-ANN、DWT-ARIMA、DWT-A1-ARIMA、DWT-ARIMA-ANN與兩個新提出的模型:DWT-2-ARIMA-ANN及ARIMA-DWT-ANN之表現差異。此外,關於山貓與高麗菜菜價的兩筆真實資料被用於實證模型的功效。新提出的ARIMA-DWT-ANN在模擬資料與山貓資料中皆有最佳的表現,而ANN則是高麗菜菜價資料中表現最好的模型。在二因子變異數分析中,不同模型的差異在結果上是顯著的。
做為一個簡短的結論,ARIMA、ANN、ARIMA-ANN、DWT-ARIMA-ANN與ARIMA-DWT-ANN是較為推薦的模型。由於混合模型面對不同資料的表現可能因內含的ARIMA或ANN架構而有所差異,因此在面對新資料時,應將上述所有模型列入考慮。

Nowadays, time series forecasting is a challenging task of interest in many disciplines. A variety of techniques have been developed to deal with the problem through a combination of different disciplines. Although various researches have proved successful for hybrid models, none of them carried out the comparisons with solid statistical test.
This study proposes a new stepwise model determination method for ANN based rule of thumb and two novel hybrid models combining ARIMA, ANN and DWT. Simulation studies are conducted to compare the performance of different models, including ARIMA, ANN, ARIMA-ANN, DWT-ARIMA, DWT-A1-ARIMA, DWT-ARIMA-ANN and the two proposed methods, DWT-2-ARIMA-ANN and ARIMA-DWT-ANN. Also, two real data sets, lynx data and cabbage data, are used to demonstrate the applications. Our proposed method, ARIMA-DWT-ANN, outperforms other methods in both simulated datasets and lynx data, while ANN shows a better performance in the cabbage data. We conducted a two-way ANOVA test to compare the performances of methods. The results showed a significant difference between methods.
As a brief conclusion, it is suggested to try on ARIMA, ANN, ARIMA-ANN, DWT-ARIMA-ANN and the proposed model, ARIMA-DWT-ANN. Since the performance of these hybrid models may vary across data sets based on their ARIMA alike or ANN alike natures, they should all be considered when encountering a new data to reach an optimal performance.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60794
DOI: 10.6342/NTU202001271
全文授權: 有償授權
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
U0001-0207202017434300.pdf
  未授權公開取用
1.87 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved