Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60790
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳奕君(I-Chun Cheng)
dc.contributor.authorPo-Yuan Chenen
dc.contributor.author陳柏元zh_TW
dc.date.accessioned2021-06-16T10:30:19Z-
dc.date.available2015-08-28
dc.date.copyright2013-08-28
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation[1] (2013). Carbon Dioxide at NOAA’s Mauna Loa Observatory reaches new milestone: Tops 400 ppm. Available: http://www.esrl.noaa.gov/gmd/news/7074.html
[2] 翁敏航, 楊茹媛, 管鴻, and 晁成虎, 太陽能電池-原理、元件、材料、製程與檢測技術: 東華書局, 2011.
[3] M. Yu, Y. Z. Long, B. Sun, and Z. Fan, 'Recent advances in solar cells based on one-dimensional nanostructure arrays,' Nanoscale, vol. 4, pp. 2783-96, Apr 28 2012.
[4] R. C. Chittick, J. H. Alexander, and H. f. Sterling, 'The Preparation and properites of amorphous silicon,' Journal of The Elctrochemical Society, vol. 116, pp. 77-81, 1969.
[5] W. E. Spear and P. G. L. Comber, 'Electronic properties of substitutionally doped amorphous Si and Ge,' Philosophical Magazine, vol. 33, pp. 935-949, 1976.
[6] D. E. C. C. R. Wronski, 'Amorphous silicon solar cell ' Applied Physics Letters, vol. 28, p. 671, 1976.
[7] B. D. Benagli S, Vallat-Sauvain E, Meier J, Kroll U, Hötzel J, Spitznagel J, Steinhauser J, Castens L, Djeridane Y. , 'High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.,' presented at the 24th European Photovoltaic Solar Energy Conference, Hamburg, 2009.
[8] B. Rech and H. Wagner, 'Potential of amorphous silicon for solar cells,' Applied Physics A, vol. 69, pp. 155-167, 1999.
[9] A. Banerjee and S. Guha, 'Study of back reflectors for amorphous silicon alloy solar cell application,' Journal of Applied Physics, vol. 69, p. 1030, 1991.
[10] O. Kluth, B. Rech, L. Houben, S. Wieder, G. SchoÈpe, C. Beneking, H. Wagner, A. LoÈf‾, and H. W. Schock, 'Texture etched ZnO Al coated glass substrates for silicon based thin film solar cells,' Thin Solid Films, vol. 351, pp. 247-253, 1999.
[11] D. Kim, H. Kim, K. Jang, S. Park, K. Pillai, and J. Yi, 'Electrical and optical properties of low pressure chemical vapor deposited Al-doped ZnO transparent conductive oxide for thin film solar cell,' Journal of The Electrochemical Society, vol. 158, p. D191, 2011.
[12] R. Wood, 'XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, pp. 396-402, 1902.
[13] U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),' JOSA, vol. 31, pp. 213-222, 1941.
[14] A. Hessel and A. Oliner, 'A new theory of Wood’s anomalies on optical gratings,' Applied Optics, vol. 4, pp. 1275-1297, 1965.
[15] 邱國斌 and 蔡定平, '金屬表面電漿簡介,' 物理雙月刊, 廿八卷二期, pp. 472-485, 2006.
[16] H. Ghaemi, T. Thio, D. e. a. Grupp, T. W. Ebbesen, and H. Lezec, 'Surface plasmons enhance optical transmission through subwavelength holes,' Physical Review B, vol. 58, p. 6779, 1998.
[17] K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing,' Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007.
[18] R. P. Van Duyne, 'Molecular plasmonics,' Science, vol. 306, pp. 985-986, 2004.
[19] A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, 'Plasmonic materials for surface-enhanced sensing and spectroscopy,' Mrs Bulletin, vol. 30, pp. 368-375, 2005.
[20] E. Yablonovitch and G. D. Cody, 'Intensity enhancement in textured optical sheets for solar cells,' Electron Devices, IEEE Transactions on, vol. 29, pp. 300-305, 1982.
[21] E. Yablonovitch, 'Statistical ray optics,' JOSA, vol. 72, pp. 899-907, 1982.
[22] Z. Yu, A. Raman, and S. Fan, 'Fundamental limit of nanophotonic light trapping in solar cells,' Proceedings of the National Academy of Sciences, vol. 107, pp. 17491-17496, 2010.
[23] P. Sheng, A. Bloch, and R. Stepleman, 'Wavelength‐selective absorption enhancement in thin‐film solar cells,' Applied Physics Letters, vol. 43, pp. 579-581, 1983.
[24] Z. Yu, A. Raman, and S. Fan, 'Fundamental limit of light trapping in grating structures,' arXiv preprint arXiv:1006.4331, 2010.
[25] H. A. Atwater and A. Polman, 'Plasmonics for improved photovoltaic devices,' Nature materials, vol. 9, pp. 205-213, 2010.
[26] V. E. Ferry, M. A. Verschuuren, H. B. Li, E. Verhagen, R. J. Walters, R. E. Schropp, H. A. Atwater, and A. Polman, 'Light trapping in ultrathin plasmonic solar cells,' Optics Express, vol. 18, pp. A237-A245, 2010.
[27] V. E. Ferry, M. A. Verschuuren, M. C. v. Lare, R. E. Schropp, H. A. Atwater, and A. Polman, 'Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si: H solar cells,' Nano letters, vol. 11, pp. 4239-4245, 2011.
[28] T. Söderström, F. J. Haug, X. Niquille, and C. Ballif, 'TCOs for nip thin film silicon solar cells,' Progress in Photovoltaics: Research and applications, vol. 17, pp. 165-176, 2009.
[29] F. Haug, V. Terrazzoni-Daudrix, T. Söderström, X. Niquille, J. Bailat, and C. Ballif, 'Flexible microcrystalline silicon solar cells on periodically textured plastic substrates,' Proceedings of the 21st European PVSEC, vol. 1651, 2006.
[30] V. E. Ferry, M. A. Verschuuren, H. B. Li, R. E. Schropp, H. A. Atwater, and A. Polman, 'Improved red-response in thin film a-Si: H solar cells with soft-imprinted plasmonic back reflectors,' Applied Physics Letters, vol. 95, pp. 183503-183503-3, 2009.
[31] H. Sai, H. Fujiwara, and M. Kondo, 'Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells,' Solar Energy Materials and Solar Cells, vol. 93, pp. 1087-1090, 2009.
[32] H. Sai, H. Fujiwara, M. Kondo, and Y. Kanamori, 'Enhancement of light trapping in thin-film hydrogenated microcrystalline Si solar cells using back reflectors with self-ordered dimple pattern,' Applied Physics Letters, vol. 93, pp. 143501-143501-3, 2008.
[33] H. Sai and M. Kondo, 'Effect of self-orderly textured back reflectors on light trapping in thin-film microcrystalline silicon solar cells,' Journal of Applied Physics, vol. 105, pp. 094511-094511-8, 2009.
[34] H. Sai and M. Kondo, 'Light trapping effect of patterned back surface reflectors in substrate-type single and tandem junction thin-film silicon solar cells,' Solar Energy Materials and Solar Cells, vol. 95, pp. 131-133, 2011.
[35] H. Sai, K. Saito, and M. Kondo, 'Investigation of textured back reflectors with periodic honeycomb patterns in thin-film silicon solar cells for improved photovoltaic performance,' 2013.
[36] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, 'Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,' Nano letters, vol. 9, pp. 279-282, 2008.
[37] J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, 'Nanodome solar cells with efficient light management and self-cleaning,' Nano letters, vol. 10, pp. 1979-1984, 2009.
[38] C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, and M. Cantoni, 'Light trapping in solar cells: can periodic beat random?,' ACS nano, vol. 6, pp. 2790-2797, 2012.
[39] C. M. Hsu, C. Battaglia, C. Pahud, Z. Ruan, F. J. Haug, S. Fan, C. Ballif, and Y. Cui, 'High‐Efficiency amorphous silicon solar cell on a periodic nanocone back reflector,' Advanced Energy Materials, vol. 2, pp. 628-633, 2012.
[40] T.-G. Chen, P. Yu, Y.-L. Tsai, C.-H. Shen, J.-M. Shieh, M.-A. Tsai, and H.-C. Kuo, 'Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si: H thin film solar cells,' Optics Express, vol. 20, pp. A412-A417, 2012.
[41] M.-A. Tsai, H.-W. Han, Y.-L. Tsai, P.-C. Tseng, P. Yu, H.-C. Kuo, C.-H. Shen, J.-M. Shieh, and S.-H. Lin, 'Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,' Optics Express, vol. 19, pp. A757-A762, 2011.
[42] W.-C. Tu, Y.-T. Chang, C.-H. Yang, D.-J. Yeh, C.-I. Ho, C.-Y. Hsueh, and S.-C. Lee, 'Hydrogenated amorphous silicon solar cell on glass substrate patterned by hexagonal nanocylinder array,' Applied Physics Letters, vol. 97, pp. 193109-193109-3, 2010.
[43] C.-C. Ho, P.-Y. Chen, K.-H. Lin, W.-T. Juan, and W.-L. Lee, 'Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface,' ACS Applied Materials & Interfaces, vol. 3, pp. 204-208, 2011.
[44] http://www.tungsten.com/ebevap.html
[45]http://commons.wikimedia.org/wiki/File:Fig.6_%28a%29_Vapor_thermal_Evaporation_.JPG.
[46] http://www.msi-pse.com/magnetron_sputtering.htm.
[47] http://cnx.org/content/m25495/latest/.
[48] M. Huff, 'MEMS fabrication,' Sensor Review, vol. 22, pp. 18-33, 2002.
[49] http://cmrf.research.uiowa.edu/scanning-electron-microscopy.
[50] http://www3.physik.uni-greifswald.de/method/afm/eafm.htm.
[51] http://www.files.chem.vt.edu/chem-ed/optics/selector/spectrom.html.
[52] 陳頤承、郭昭顯、陳俊亨. (2008) 太陽電池量測技術. 工業材料雜誌.
[53] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. Ebbesen, 'Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,' Physical review letters, vol. 92, p. 107401, 2004.
[54] H. Gao, W. Zhou, and T. W. Odom, 'Plasmonic crystals: A platform to catalog resonances from ultraviolet to near‐infrared wavelengths in a plasmonic library,' Advanced Functional Materials, vol. 20, pp. 529-539, 2010.
[55] E. D. Palik, Handbook of optical constants of solids: London, Academic, 1985.
[56] J. M. McMahon, J. Henzie, T. W. Odom, G. C. Schatz, and S. K. Gray, 'Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,' Opt. Express, vol. 15, p. 18, 2007.
[57] S. A. Maier, Plasmonics: Fundamentals and applications: Springer, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60790-
dc.description.abstract本論文研究週期性奈米環形槽陣列之背反射電極的光學性質及其於氫化非晶矽薄膜太陽能電池之應用。環形槽係指一奈米孔洞內有奈米柱之結構,孔洞之直徑即為環形槽外徑,奈米柱之直徑即為環形槽內徑。首先我們固定結構深度,維持環形槽內徑及環形槽外徑之比例為0.7左右,發現在不同週期(200 nm、400 nm、500 nm、1000 nm)下,隨著週期越大,太陽能電池之光電轉換效率越高。從鍍銀環形槽陣列之積分反射及徑向反射頻譜上,我們發現在某些波長下反射率有突降(dip)的現象,突降發生的波長與週期有關。此反射率突降產生的原因是因為週期性結構產生表面電漿子共振。在霧度頻譜上,霧度會隨著週期增加而提昇。外部量子效率量測中發現,電流主要在紅光區段有所提昇,而週期越大,紅光區段的增益也越高,可歸因於基板的表面電漿子效應及霧度的提昇所致。
接著我們比較在週期固定為1000 nm,環形槽外徑為900 nm,觀察三種不同環形槽內徑之環形槽陣列鍍銀後的光學特性。我們在入射角固定為5度之變角度反射率頻譜中發現,相較於鍍銀後之奈米洞陣列,鍍銀後之奈米環形槽陣列反射角大於40度下有較大的反射率,由此可知,相較於奈米洞陣列,奈米環形槽陣列可提昇光的散射。以有限時域差分法分析鍍銀後之奈米環形槽陣列及奈米洞陣列發現,奈米環形槽陣列可以將入射光散射至較大角度,而其表面電漿子之近場強度及分佈也與奈米洞陣列有所不同。
最後我們發現三種製作於奈米環形槽陣列背反射電極的氫化非晶矽薄膜太陽能電池在光電轉換效率上皆優於製作於與環形槽外徑相同之奈米洞陣列背反射電極的電池。與製作於平面結構背反射電極的電池相比,環形槽內徑為630 nm的環形槽陣列雖使開路電壓從0.83 V微降至0.81 V,但電池效率由4.27%提昇至5.94%(提昇39%),短路電流從9.42 mA/cm2上升至11.11mA/cm2(提昇18%),填充因子則由54.61%昇至66.01%(提昇21%)。
zh_TW
dc.description.abstractPeriodic anti-ring arrays were fabricated and applied as the back reflectors in hydrogenated amorphous silicon thin film solar cells. The anti-ring is composed of a nanopillar inside a nanohole. The outer diameter of the anti-ring is defined as the hole diameter, and the inner diameter of the anti-ring is defined as the diameter of the nanopillar.
First, we studied the performance of the cells fabricated on anti-ring arrays with periods of 200 nm, 400 nm, 500 nm, and 1000 nm, respectively while fixing their depth at about 100 nm and ratio of the inner diameter and outer diameter at about 0.7. We found that the larger the period, the higher the cell power conversion efficiency. Several dips were observed in the reflectance spectra of Ag-coated anti-ring arrays. The dip is caused by the excitation of the surface plasmon resonance modes and its corresponding wavelength is related to the period of the anti-ring array. The haze is also enhanced when the period increased. As a result, enhancement of external quantum efficiency was observed in the red to infrared region. The larger the period, the greater the enhancement.
Next, we studied the effect of the inner diameter size of the anti-ring while keeping the period at 1000 nm and the outer diameter at 900 nm. The angle-resolved reflectance spectra reveals that the reflectance at large angle(>40o) is enhanced when the center pillar presents. The cells fabricated on the anti-ring back reflector outperform that fabricated on the nanohole back reflector (i.e. without center pillar). The cell fabricated on anti-ring back reflector with anti-ring inner diameter of 630 nm exhibits a Voc of 0.81 V, a Jsc of 11.11 mA/cm2, a FF of 66.01% and a power conversion efficiency of 5.94%, which is 39% improvement compared to the cell fabricated on the flat back reflector.
Simulation based on Finite-Difference Time-Domain (FDTD) shows that the anti-ring array back reflector can scatter more light into large angle compared to the nanohole back reflector. The intensity and distribution of the surface plasmon polariton are altered due to the presence of the center pillar.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:30:19Z (GMT). No. of bitstreams: 1
ntu-102-R00941106-1.pdf: 36576525 bytes, checksum: 86bcd1ce5798083d30e4d1618cd4bf7e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiii
第1章 介紹與文獻回顧 1
1.1 前言 1
1.2 氫化非晶矽薄膜太陽能電池 2
1.2.1 背景介紹 2
1.2.2 電池結構 4
1.2.3 奈米結構之背反射電極 7
1.3 表面電漿子介紹 9
1.3.1 背景介紹 9
1.3.2 表面電漿子 9
1.3.3 侷域性表面電漿子 11
1.4 文獻回顧與探討 12
1.5 研究動機 16
1.6 論文架構 16
第2章 實驗方法及量測 17
2.1 單層奈米球膜製備 17
2.2 薄膜沉積設備 18
2.2.1 電子束蒸鍍 18
2.2.2 熱蒸鍍機 19
2.2.3 磁控濺鍍機 20
2.2.4 電漿輔助化學氣相沉積 21
2.3 蝕刻設備-反應式離子蝕刻機 22
2.4 元件製作 23
2.4.1 奈米洞陣列 23
2.4.2 奈米環形槽陣列 25
2.4.3 非晶矽薄膜太陽能電池製作 27
2.5 量測及分析儀器 29
2.5.1 掃描式電子顯微鏡 29
2.5.2 原子力顯微鏡 30
2.5.3 光譜儀 31
2.5.4 太陽光模擬器 32
2.5.5 外部量子效率分析機台 32
第3章 實驗結果 33
3.1 表面形貌 33
3.1.1 掃描式電子顯微鏡圖 33
3.1.2 原子力顯微鏡圖 44
3.2 光學性質 50
3.2.1 鍍銀後之光學性質 50
3.2.2 鍍銀及氧化鋅鋁後之光學性質 56
3.3 太陽能電池效率量測結果 58
3.3.1 不同週期之奈米環形槽陣列 58
3.3.2 週期1000 nm,不同環形槽內徑之奈米環形槽陣列 59
3.4 外部量子效率量測結果 61
3.4.1 不同週期之奈米環形槽陣列 61
3.4.2 週期1000 nm,不同環形槽內徑之奈米環形槽陣列 62
第4章 討論與分析 63
4.1 不同週期之環形槽陣列表面電漿子性質討論 63
4.2 週期1000 nm,不同環形槽內徑大小表面電漿子性質討論 69
4.3 綜合比較與討論 75
4.3.1 太陽能電池效率綜合討論 75
4.3.2 外部量子效率綜合討論 77
第5章 結論與未來展望 78
5.1 結論 78
5.2 未來展望 79
參考資料 80
dc.language.isozh-TW
dc.subject週期性奈米結構zh_TW
dc.subject氫化非晶矽薄膜太陽能電池zh_TW
dc.subject表面電漿子zh_TW
dc.subject奈米球微影術zh_TW
dc.subjectnanosphere lithographyen
dc.subjecthydrogenated amorphous silicon thin film solar cellen
dc.subjectsurface plasmon polaritonen
dc.subjectperiodic nanostructureen
dc.title奈米環形槽陣列之表面電漿子特性研究及其於氫化非晶矽薄膜太陽能電池之應用zh_TW
dc.titlePlasmonic properties of anti-ring array and its application on hydrogenated amorphous silicon thin film solar cellen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李偉立(Wei-Li Lee),張宏鈞(Hung-chun Chang),吳志毅(Chih-I Wu),陳建彰(Jian-Zhang Chen)
dc.subject.keyword氫化非晶矽薄膜太陽能電池,表面電漿子,奈米球微影術,週期性奈米結構,zh_TW
dc.subject.keywordhydrogenated amorphous silicon thin film solar cell,surface plasmon polariton,nanosphere lithography,periodic nanostructure,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
35.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved