請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60786
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林長平(Chan-Pin Lin) | |
dc.contributor.author | Yu-Hsin Huang | en |
dc.contributor.author | 黃禹馨 | zh_TW |
dc.date.accessioned | 2021-06-16T10:30:08Z | - |
dc.date.available | 2016-07-01 | |
dc.date.copyright | 2013-08-28 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., Araki, T. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309: 1052-1056.
Allen, R. S., Li, J., Stahle, M. I., Dubroue, A., Gubler, F., Millar, A. A. 2007. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc. Natl. Acad. Sci. USA. 104: 16371-16376. Aukerman, M. J., Sakai, H. 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15: 2730-2741. Azevedo, J., Garcia, D., Pontier, D., Ohnesorge, S., Yu, A., Garcia, S., Braun, L., Bergdoll, M., Hakimi, M. A., Lagrange, T., Voinnet, O. 2010. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24: 904-915. Bai, X., Correa, V. R., Toruno, T. Y., Ammar El, D., Kamoun, S., Hogenhout, S. A. 2009. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant-Microbe Interact. 22: 18-30. Blazquez, M. 2000. Flower development pathways. J. Cell Sci. 113: 3547-3548. Campo, S., Peris-Peris, C., Sire, C., Moreno, A. B., Donaire, L., Zytnicki, M., Notredame, C., Llave, C., San Segundo, B. 2013. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance. New Phytol. 199: 212-227. Causier, B., Schwarz-Sommer, Z., Davies, B. 2010. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 21: 73-79. Chang, T. H. 2012. Idenification of conserved microRNAs and their targets in PnWB phytoplasma induced leafy flower of Cantharanthus roseus. National Taiwan University. Chiu, M. T., Lin, C. P., Lin, P. C., Lin, S. S. 2013. Enhancement of IgG purification by FPLC for a serological study on the Turnip mosaic virus P1 protein. Plant Path. Bull. 22: 21-30. Chung, W. C., Chen, L. L., Lo, W. S., Lin, C. P., Kuo, C. H. 2013. Comparative analysis of the peanut witches'-broom phytoplasma genome reveals horizontal transfer of potential mobile units and effectors. PLoS One 8: e62770. Debernardi, J. M., Rodriguez, R. E., Mecchia, M. A., Palatnik, J. F. 2012. Functional specialization of the plant miR396 regulatory network through distinct microRNA-target interactions. PLoS Genet 8: e1002419. Domagalska, M. A., Sarnowska, E., Nagy, F., Davis, S. J. 2010. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLoS One 5: e14012. Dugas, D. V., Bartel, B. 2004. MicroRNA regulation of gene expression in plants. Curr. Opin. Plant Biol. 7: 512-520. Fabio, F., Veronica, G., Nilla, P., Lucia, C., Kater, M. 2008. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants. J. Exp. Bot. 59: 2181-2190. Fornara, F., De Montaigu, A., Coupland, G. 2010. SnapShot: Control of flowering in Arabidopsis. Cell 141: 550. Gal-On, A. 2000. A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90: 467-473. Gregis, V., Sessa, A., Colombo, L., Kater, M. M. 2006. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18: 1373-1382. Gregis, V., Sessa, A., Dorca-Fornell, C., Kater, M. M. 2009. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60: 626-637. Guo, L., Lu, Z. 2010. The fate of miRNA* strand through evolutionary analysis: implication for degradation as merely carrier strand or potential regulatory molecule? PLoS One 5: e11387. Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., Huijser, P. 2000. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21: 351-360. Himeno, M., Neriya, Y., Minato, N., Miura, C., Sugawara, K., Ishii, Y., Yamaji, Y., Kakizawa, S., Oshima, K., Namba, S. 2011. Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner. Plant J. 67: 971-979. Huang, T., Bohlenius, H., Eriksson, S., Parcy, F., Nilsson, O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309: 1694-1696. Irish, V. F. 2010. The flowering of Arabidopsis flower development. Plant J. 61: 1014-1028. Jang, S., Torti, S., Coupland, G. 2009. Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J. 60: 614-625. Jung, J. H., Seo, P. J., Kang, S. K., Park, C. M. 2011. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 76: 35-45. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., Carrington, J. C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell 4: 205-217. Khvorova, A., Reynolds, A., Jayasena, S. D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209-216. Kidner, C. A., Martienssen, R. A. 2005. The developmental role of microRNA in plants. Curr. Opin. Plant Biol. 8: 38-44. Lee, I. M., Davis, R. E., Gundersen-Rindal, D. E. 2000. Phytoplasma: phytopathogenic mollicutes. Annu. Rev. Microbiol. 54: 221-255. Lee, J. H., Park, S. H., Lee, J. S., Ahn, J. H. 2007a. A conserved role of SHORT VEGETATIVE PHASE (SVP) in controlling flowering time of Brassica plants. Biochim. Biophys. Acta. 1769: 455-461. Lee, J. H., Yoo, S. J., Park, S. H., Hwang, I., Lee, J. S., Ahn, J. H. 2007b. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21: 397-402. Lewsey, M., Robertson, F. C., Canto, T., Palukaitis, P., Carr, J. P. 2007. Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J. 50: 240-252. Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C. A., Ito, T., Meyerowitz, E., Yu, H. 2008. A repressor complex governs the integration of flowering signals in Arabidopsis. Dev. Cell 15: 110-120. Li, Z. M., Zhang, J. Z., Mei, L., Deng, X. X., Hu, C. G., Yao, J. L. 2010. PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol. Biol. 74: 129-142. Lin, S. S., Wu, H. W., Elena, S. F., Chen, K. C., Niu, Q. W., Yeh, S. D., Chen, C. C., Chua, N. H. 2009. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Path. 5(2):e1000312. Lin, Y. Y., Fang, M. M., Lin, P. C., Chiu, M. T., Lin, C. P., Lin, S. S. 2013. Improving initial infectivity of the Turnip mosaic virus (TuMV) infectious clone by agro-infiltration and redesigning the binary vector. Bot. Stud. (in press) Litt, A., Kramer, E. M. 2010. The ABC model and the diversification of floral organ identity. Semin. Cell Dev. Biol. 21: 129-137. Liu, C., Zhou, J., Bracha-Drori, K., Yalovsky, S., Ito, T., Yu, H. 2007. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134: 1901-1910. Liu, C., Thong, Z., Yu, H. 2009a. Coming into bloom: the specification of floral meristems. Development 136: 3379-3391. Liu, C., Xi, W., Shen, L., Tan, C., Yu, H. 2009b. Regulation of floral patterning by flowering time genes. Dev. Cell 16: 711-722. Liu, D., Song, Y., Chen, Z., Yu, D. 2009c. Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol. Plant. 136: 223-236. Maclean, A. M., Sugio, A., Makarova, O. V., Findlay, K. C., Grieve, V. M., Toth, R., Nicolaisen, M., Hogenhout, S. A. 2011. Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol. 157: 831-841. Mallory, A. C., Dugas, D. V., Bartel, D. P., Bartel, B. 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14: 1035-1046. Millar, A. A., Gubler, F. 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17: 705-721. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J. D. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312: 436-439. Navarro, L., Jay, F., Nomura, K., He, S. Y., Voinnet, O. 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321: 964-967. Papp, I. N., Mette, M. F., Aufsatz, W., Daxinger, L., Schauer, S. E., Ray, A., Winden, J. V. D., Matzke, M., Matzke, A. J. M. 2003. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 132: 1382-1390. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., Bartel, D. P. 2002. Prediction of plant microRNA targets. Cell 110: 513-520. Rodriguez, R. E., Mecchia, M. A., Debernardi, J. M., Schommer, C., Weigel, D., Palatnik, J. F. 2010. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137: 103-112. Sablowski, R. 2007. Flowering and determinacy in Arabidopsis. J. Exp. Bot. 58: 899-907. Schott, G., Mari-Ordonez, A., Himber, C., Alioua, A., Voinnet, O., Dunoyer, P. 2012. Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. EMBO J. 31: 2553-2565. Schultz, E. A., Haughn, G. W. 1991. LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3: 771-781. Shiboleth, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V., Gal-On, A. 2007. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J. Virol. 81: 13135-13148. Sugio, A., Kingdom, H. N., Maclean, A. M., Grieve, V. M., Hogenhout, S. A. 2011a. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA. 108: 1254-1263. Sugio, A., Maclean, A. M., Kingdom, H. N., Grieve, V. M., Manimekalai, R., Hogenhout, S. A. 2011b. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu. Rev. Phytopathol. 49: 175-195. Trevaskis, B., Tadege, M., Hemming, M. N., Peacock, W. J., Dennis, E. S., Sheldon, C. 2007. Short vegetative phase-like MADS-box genes inhibit floral meristem identity in barley. Plant Physiol. 143: 225-235. Tseng, H. I. 2011. High-throughput transcriptome and small RNA analysis for studying phytoplasma infection on Cantharanthus roseus using Next Generation Sequencing. National Taiwan University. Voinnet, O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687. Wang, J. W., Czech, B., Weigel, D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138: 738-749. Wang, M., Soyano, T., Machida, S., Yang, J. Y., Jung, C., Chua, N. H., Yuan, Y. A. 2011. Molecular insights into plant cell proliferation disturbance by Agrobacterium protein 6b. Genes Dev. 25: 64-76. Wilson, D. C., Carella, P., Isaacs, M., K., C. R. 2013. The floral transition is not the developmental switch that confers competence for the Arabidopsis age-related resistance response to Pseudomonas syringae pv. tomato. Plant Mol. Biol. 1007/s11103-013-0083-7. Wollmann, H., Mica, E., Todesco, M., Long, J. A., Weigel, D. 2010. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 137: 3633-3642. Wu, G., Poethig, R. S. 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133: 3539-3547. Wu, H. W., Lin, S. S., Chen, K. C., Yeh, S. D., Chua, N. H. 2010. Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant-Microbe Interact. 23: 17-28. Wu, R. M., Walton, E. F., Richardson, A. C., Wood, M., Hellens, R. P., Varkonyi-Gasic, E. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J. Exp. Bot. 63: 797-807. Yang, J. Y., Iwasaki, M., Machida, C., Machida, Y., Zhou, X., Chua, N. H. 2008. betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 22: 2564-2577. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W., Chua, N. H. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1: 641-646. Zhang, X. R., Garreton, V., Chua, N. H. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19: 1532-1543. Zhang, Z., Zhang, X. 2012. Argonautes compete for miR165/166 to regulate shoot apical meristem development. Curr. Opin. Plant Biol. 15: 652-658. Zhou, G. K., Kubo, M., Zhong, R., Demura, T., Ye, Z. H. 2007. Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant Cell Physiol. 48: 391-404. Zhu, Q. H., Helliwell, C. A. 2011. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 62: 487-495. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60786 | - |
dc.description.abstract | 植物菌質體為一群侷限於植物維管束中的絕對寄生菌,感染花生簇葉病植物菌質體 (peanuts witches’ broom phytoplasma, PnWB) 之日日春 (Catharanthus roseus) 植株產生簇葉、花器綠化及花器葉化等典型病徵。根據本實驗室建立之日日春全轉錄體與小分子 RNA 資料庫中發現 Cr_miR396a 可能會抑制 SHORT VEGETATIVE PHASE (CrSVP1, CrSVP2) 基因表現,利用農桿菌滲透注射法將 miR396a 與 CrSVPs 共同表現於菸草中並偵測到 CrSVPs 表現量下降。在 Cr_MIR396a 轉基因阿拉伯芥中,其 AtSVP 基因低度表現而 AtFT 基因高度表現,此結果皆顯示 miR396a 確實會抑制 CrSVP1 與 CrSVP2 基因表現,並影響下游基因表現。許多報導指出高度表現 SVP 之轉基因植物將會產生花器葉化之表型,另有研究指出,翠菊黃萎病植物菌質體 (aster yellows witches’ broom phytoplasma, AYWB) 之 SAP54AY 是主要造成植物花器葉片化之效應蛋白 (effector), SAP54AY 轉基因阿拉伯芥展現出嚴重之花器葉化表型。此外, SAP54AY 抑制 At_miR396 之生合成,造成 AtSVP 表現量上升而發展葉狀花器,進一步將 SAP54AY 轉基因植物進行全轉錄體與小分子 RNA 之次世代定序分析,將其結果與日日春資料庫進行開花相關基因與微型核酸 (microRNA) 之表現量趨勢分析,發現在兩種植物樣本中皆有 miR396 調控 SVP 基因表現之現象,且大部分開花相關基因具有相同之表現趨勢。本研究推測植物菌質體的效應蛋白 SAP54AY 干擾了 miR396 所控制之 SVP 基因表現,進而使 SVP 基因表現量上升造成花器葉化之病徵。 | zh_TW |
dc.description.abstract | Phytoplasmas are special bacteria that are obligated parasites on plants and cause floral transition. The significant symptoms of peanuts witches’ broom (PnWB) phytoplasma-infected Catharanthus roseus plants are witches’ broom, virescence, and phyllody. In previous studies, the transcriptome and small RNA profiles of PnWB -infected C. roseus plants showed that Cr_miR396a might target SHORT VEGETATIVE PHASE (CrSVP1 and CrSVP2) genes. The transient expression analysis showed that Cr_miR396a specifically down regulation of CrSVP1 and CrSVP2 in vivo. In transgenic Arabidopsis expressing Cr_MIR396a, the AtSVP showed low expression level, but high level of AtFT compared to non-transgenic Arabidopsis plant, confirming the results of transient expression analysis. Moreover, many reports indicated that over-expressing SVP genes causes leafy flower phenotype, implying that high expression levels of SVP trigger leafy flower development. SAP54 is an important phytoplasma effector, which causes leafy flower phenotype in plant host. The transcriptome and miRNA profiles of transgenic Arabidopsis expressing SAP54AY were analyzed by next generation sequencing (NGS). The expression levels of flowering related genes of SAP54AY plants are consistent with PnWB-infected C. roseus plants. Moreover, SAP54AY repressed At_miR396 biogenesis, causing AtSVP over-expression in SAP54AY plants. We hypothesized that SAP54AY triggers leafy flower development through negative regulation of the miR396, resulting over-expression of SVP gene and abnormal floral development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:30:08Z (GMT). No. of bitstreams: 1 ntu-102-R00633016-1.pdf: 3563081 bytes, checksum: 66573b9b6b3cd4f8dea5f88edeeeaa34 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員審定書 I
中文摘要 IV Abstract V Contents VII Introduction 1 Materials and Methods 9 Plant materials, growth conditions, and phytoplasma infection 9 Gene construction and transgenic plants 9 Screening of mir396a mutants of Arabidopsis 11 Transient expression by agro-infiltration 12 Construction of SAP54 genes on attenuated viral vector of TuMV 12 Total RNA extraction, RT-PCR and northern blot 13 Western blot 16 Statistic analysis and deep sequencing 17 Results 18 The Cr_MIR396a/b precursors and their targets CrSVP1 and CrSVP2 in C. roseus plant 18 Analysis of CrSVP1, CrSVP2 and Cr_miR396a expression C. roseus plants 18 The miR396a target site is highly conserved in MADS-Box domain of various SVP genes 19 The characterization of Cr_MIR396a 20 The characterization of CrSVPs 22 Cr_miR396a-mediated CrSVP1 and CrSVP2 down-regulation 23 The SAP54 causes leafy flower in Arabidopsis plants 24 The classification and characterization of SAP54AY over-expression Arabidopsis 25 NGS analysis of C. roseus and SAP54AY plants 26 SAP54AY does not suppress miR396a-mediated CrSVP1 and CrSVP2 regulations 28 Discussion 29 MiR396a-mediated CrSVP1 and CrSVP2 down-regulation with a sequence- specific manner 29 SVP over-expression promotes the development of leafy flower 30 SAP54AY effector and PnWB phytoplasma modulate abnormal miRNAs expression 32 The novel viral vector TuGK can bring SAP54 effector and develops consistent phenotype to SAP54AY transgenic plant 33 References 35 Tables 44 Figures 46 Supplementary figures 61 | |
dc.language.iso | en | |
dc.title | MiR396 調控 SVP 基因表現造成花器葉化及其與植物菌質體效應蛋白 SAP54 之關係 | zh_TW |
dc.title | MiR396-mediated SVP gene expression in floral transition reprogramming and its involvement with phytoplasma effector SAP54 | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉錫東(Shyi-Dong Yeh),詹富智(Fuh-Jyh Jan),劉瑞芬(Ruey-Fen Liou),林詩舜(Shih-Shun Lin) | |
dc.subject.keyword | 花生簇葉病植物菌質體,翠菊黃萎病植物菌質體,花器葉化,SAP54,SVP,miR396, | zh_TW |
dc.subject.keyword | PnWB phytoplasma,AYWB phytoplasma,SAP54,SVP,miR396,leafy flower, | en |
dc.relation.page | 63 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。