Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉家瑄(Char-Shine Liu)
dc.contributor.authorPei-Cheng Hsiaen
dc.contributor.author夏培正zh_TW
dc.date.accessioned2021-06-16T10:29:57Z-
dc.date.available2013-08-23
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation中文部分
互動國際數位股份有限公司 (2011) ArcGIS 10基礎學習與應用寶典。新文京開發出版股份有限公司。
吳佳瑜 (2008) 台灣南部海域海底崩移之分佈與特徵。國立臺灣大學理學院海洋研究所碩士論文,共84頁。
邱瑞焜、劉家瑄 (2005) 連續變頻聲納在海洋環境調查上之應用。海洋及水下科技季刊,第15卷,第2期,46-50頁。
邱瑞焜 (2009) 以海床迴聲特徵探討臺灣海峽及臺灣西南海域之淺層沉積作用。國立臺灣大學理學院海洋研究所博士論文,共136頁。
邱瑞焜、許鶴瀚、邱協棟、劉家瑄 (2010) 地層剖面資料在海洋環境研究上的演進。海洋及水下科技季刊,第20卷,第4期,40-46頁。
許鶴瀚 (2007) 宜蘭陸棚上的淺層沉積構造及沉積物傳輸模式。國立臺灣大學理學院海洋研究所碩士論文,共99頁。
陳之馨 (2001) 澎湖峽谷數值地形模型之分析模擬。國立臺灣大學理學院海洋研究所碩士論文,共60頁。
陳儀清 (1997) 台灣西南外海海床表層沉積現象之研究。國立臺灣大學海洋研究所博士論文,共160頁。
曾世霖 (2011) 台灣西南外海高屏峽谷沉積物及沉積物機制研究。國立中央大學地球科學院地球物理研究所碩士論文,共140頁。
曾靜宜 (2009) 台灣西南海域陸棚及峽谷內沈積物傳輸方式。國立臺灣大學理學院海洋研究所碩士論文,共76頁。
劉玲雯 (2009) 高屏海底峽谷的曲流特徵及其在沉積物傳輸的意義。國立臺灣大學理學院海洋研究所碩士論文,共83頁。
鄭屹雅 (2012) 台灣西南海域沈積物重力流引發之海底電纜斷裂事件。國立臺灣大學理學院海洋研究所碩士論文,共98頁。
羅聖宗 (1999) 台灣花東海域陸坡沉積物穩定性研究。國立臺灣大學海洋研究所博士論文,共214頁。
英文部分
Band, L. E. (1986) Topographic partition of watersheds with digital elevation models. Water resources research, 22, 15-24.
Barber, A. J., Tjokrosapoetro, S., and Charlton, T. R. (1986) Mud volcanoes, shale diapirs, wrench faults, and melanges in accretionary complexes, eastern Indonesia. AAPG Bulletin, 70(11), 1729-1741.
Booth, J.S., O’Leary, D.W., Popenoe, P., Danforth, 1993. US Atlantic continental slope landslides; their distribution, general attributes, and implications. Submarine Landslides: Selected Studies in the US Exclusive Economic Zone, 2002, 14-22.
Carter, L., Burnett, D., Drew, S., Marle, G., Hagadorn, L., Bartlett-McNeil, D., and Irvine, N. (2009) Submarine cables and the oceans:connecting the World. UNEP-WCMC Biodiversity Series, 31, 64pp.
Carter, L., Milliman, J. D., Talling, P. J., Gavey, R., Wynn, R. B. (2012) Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophysical Research Letters, 39, L12603.
Chen, M. P., and Tian, W. M. (1982) Marine geotechhical properties and stability of the continental margin deposits off Hua-Lien, northeast of Taiwan. Acta Oceanographica Taiwanica, 13, 23-68.
Chen, C. T. A., Zhang, J., Peng, T. R., and Hagiwara, T. (2005) Exploratory sampling of submarine groundwater discharge in Taiwan. Geochemistry, 39, 165-171.
Chiang, C. S., and Yu, H. S., (2006) Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge. Geomorphology, 80, 199-213.
Chiang, C. S., Yu, H. S., Noda, A., TuZino, T., and Su, C. C., (2012) Avulsion of the Fangliao submarine canyon off southwestern Taiwan as revealed by morphological analysis and numerical simulation. Geomorphology, 117, 26-37.
Chough, S. K., Kim, J. W., Lee, S. H., Shinn, Y. J., Jin, J. H., Suh, M. C., and Lee, J. S. (2002) High-resolution acoustic characteristics of epicontinental sea deposits, central–eastern Yellow Sea. Marine geology, 188, 317-331.
Damuth, J. E. (1980a) Quaternary sedimentation processes in the South China Basin as revealed by echo-character mapping and piston-core studies. Geophysical Monograph Series, 23, 105-125.
Damuth, J. E. (1980b) Use of high-frequency (3.5–12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: a review. Marine Geology, 38, 51-75.
Fryer, G. J., Watts, P., and Pratson, L. F. (2004) Source of the great tsunami of 1 April 1946: a landslide in the upper Aleutian forearc. Marine Geology, 203, 201–218.
Hampton, M. A., Lee, H. J., Locat, J. (1996) Submarine landslides. Reviews of geophysics, 34, 33-59.
Heezen, B. C., and Ewing, M. (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks [Newfoundland] earthquake. American Journal of Science, 250, 849-873.
Hsu, S. K., Kuo, J., Lo, C. L., Tsai, C. H., Doo, W. B., Ku, C. Y., Sibuet, J. C. (2008) Turbidity current, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 19, 767-772.
Ilstad, T., Elverhoi, A., Issler, D., and Marr, J. G. (2004) Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Marine Geology, 213, 415-438.
Jackson, M. T., and Talbot, C. J. (1986) External shapes, strain rates, and dynamics of salt structures. Geological Society of America Bulletin, 97, 305-323.
Kao, S. J., Dai, M., Selvaraj, K., Zhai, W., Cai P., Chen, S. N., Yang, J. Y. T., Liu, J. T., Liu, C. C., Syvitski, J. P. M. (2010) Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophysical Research Letters, 37, L21702.
Klauder, J. R., Price, A. C., Darlington, S., and Albersheim, W. J. (1960) The Theory and design of chirp radars. The Bell Sys. Tech. J., 39, 745-808.
Lee, S. H., Chough, S. K., Back, G. G., and Kim, Y. B. (2002) Chirp (2-7 -kHz) echo characters of the South Korea Plateau, East Sea: styles of mass movement and sediment gravity flow. Marine Geology, 184, 3, 227-247.
Lin, A. T., Yao B., Hsu, S. K., Liu C. S., Huang, C. Y. (2009) Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479, 28-42.
Liu, C. S., Lundberg, N., Reed, D. L., Huang, Y. L. (1993) Morphological and seismic characteristics of the Kaoping Submarine Canyon. Marine Geology, 111, 93-108.
Locat, J., and Lee, H. J. (2002) Submarine landslides: advances and challenges. Canadian Geotechnical Journal, 39, 193-212.
Mark, D. M. (1983) Relations Between Field‐surveyed Channel Networks and Map‐based Geomorphometric Measures, Inez, Kentucky. Annals of the Association of American Geographers, 73, 358-372.
Masson, D. G., Harbitz, C. B., Wynn, R. B., Pedersen, G., and Lovholt, F. (2006) Submarine landslides: processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 364, 2009–2039.
McAdoo, B. G., Pratson, L. F., and Orange, D. L. (2000) Submarine landslide geomorphology, US continental slope. Marine Geology, 169, 103-136.
Moore, G. W., Moore, J. G. (1988) Large-scale bedforms in boulder gravel produced by giant waves in Hawaii. Geological Society of America Special Papers, 229, 101-110.
Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., and Torresan, M. E. (1989) Prodigious submarine landslides on the Hawaiian Ridge. Journal of Geophysical Research, 94, 17465-17484.
Moore, J. G., Moore, G. W. (1984) Deposit from a giant wave on the island of Lanai, Hawaii. Science, 226, 1312-1315.
Mulder, T., and Cochonat, P. (1996) Classification of offshore mass movement. Sedimentary Research, 66, 43-57.
Mulder, T., and Syvitski, J. P. M. (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Journal of Geology, 103, 285-299.
O'Callaghan, J. F., and Mark, D. M. (1984) The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28, 323-344.
Schock, S., LeBlanc, L., and Mayer, L. (1986) Sediment classification using a wideband, frequency-modulated sonar system. Offshore Technology Conference, 389-398.
Schock, S. G., LeBlanc, L. R., and Mayer, L. A. (1989) Chirp subbottom profiler for quantitative sediment analysis. Geophysics, 54, 445-450.
Schock, S. G., and LeBlanc, L. R. (1990) Chirp sonar: New technology for sub-bottom profiling. Sea Technology, 31, 35-43.
Schock, S. G. (2004a) A method for estimating the physical and acoustic properties of the sea bed using chirp sonar data. IEEE Journal of Oceanic Engineering, 29, 1200-1217.
Schock, S. G. (2004b) Remote estimates of physical and acoustic sediment properties in the South China Sea using chirp sonar data and the Biot model. O IEEE Journal of Oceanic Engineering, 29, 1218-1230.
Shanmugam, G. (2002) Ten turbidite myths. Earth-Science Reviews, 58, 311-341.
Soh, W., Machiyama, H., Shirasaki, Y., and Kasahara, J. (2004) Deep-sea floor instability as a cause of deepwater cable fault, off eastern part of Taiwan. Frontier Research of Earth Evolution, 2, 1–8.
Su, C. C., Tseng, J. Y., Hsu, H. H., Chiang, C. S., Yu, H. S., Lin, S., and Liu, J. T. (2012) Records of submarine natural hazards off SW Taiwan. Geological Society, London, Special Publications, 361, 41-60.
Talling, P. J., Wynn, R. B., Masson, D. G., Frenz, M., Cronin, B. T., Schiebel, R., ... and Amy, L. A. (2007) Onset of submarine debris flow deposition far from original giant landslide. Nature, 450, 541-544.
Thomas, S., Hooper, J., and Clare, M. (2010) Constraining Geohazards to the Past: Impact Assessment of Submarine Mass Movements on Seabed Developments. Submarine Mass Movements and Their Consequences, Springer Netherlands, 387-398.
Varnes, D. J. (1978) Slope movement types and processes. Transportation Research Board Special Report, 176, 20-47.
Yu, H. S., and Lu, J. C. (1995) Development of the shale diapir-controlled Fangliao Canyon on the continental slope off southwestern Taiwan. Journal of Southeast Asian Earth Sciences, 11, 265-276.
Yu, H. S., Chiang, C. S., and Shen, S. M. (2009) Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. Journal of Marine Systems, 76, 369-382.
網路資料
交通部中央氣象局
http://www.cwb.gov/V7/index.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60782-
dc.description.abstract海底塊體運動為海床上沈積物之抗剪強度無法承受環境中外應力作用時發生變形破壞,並且由於自身重力影響所產生向下或向外搬運的現象。由於其形成快速搬運的過程具有潛在破壞海床與水下設施之能力,因此可能引發海底地質災害。在台灣西南海域分別因2006年屏東地震、2009年莫拉克颱風及2010年甲仙地震等事件,造成多處海底電纜斷裂的紀錄。研究調查結果顯示,這些海底電纜斷裂的發生,皆與地震或颱風誘發海底塊體運動而以重力流形式往深海傳輸有關。觀察海底電纜斷裂點位置,大致沿著高屏海底峽谷由上游至馬尼拉海溝區域呈有時序的分布,但並非所有位於峽谷內之海底電纜皆發生斷裂。因此本研究推測高屏海底峽谷地形在海底電纜斷裂事件中應具有特定影響,且重力流在傳輸過程中,應存在影響其對海底電纜所形成之拉力大小的因素。而在屏東地震發生後1分鐘內,枋寮海底峽谷區域即發生2處海底電纜斷裂的紀錄,因此枋寮海底峽谷區域應為地震直接誘發海底塊體運動的區域。本研究利用每100公尺見方為一網格點的水深資料結合海底電纜斷裂資訊,探討高屏海底峽谷區域內海底電纜斷裂與地形之間的關係,以及使用連續變頻聲納剖面資料,搭配每50公尺見方為一網格點的水深資料,分析枋寮海底峽谷區海底塊體運動活動之紀錄及形成原因。
本研究分析結果顯示高屏海底峽谷區域內,在2006年屏東地震及2009年莫拉克颱風兩事件中,分別產生兩個主要重力流活動而造成海底電纜一系列斷裂。但比較峽谷內重力流流經海底電纜未造成斷裂及造成斷裂的點位間之坡度值,並無一明顯門檻值可區分兩者,且觀察重力流產生之流速與其流徑坡度間,及斷裂點坡度與水深間之相關係數及決定係數,皆顯示兩組因子間無明顯相關性。因此推測坡度不是最主要影響海底電纜發生斷裂的因子,地質條件或電纜當時所處狀態可能才是影響海底電纜是否斷裂的主要因素,而地形僅影響重力流流動方向。
枋寮海底峽谷區域內,地形分析結果顯示位於峽谷頭部右側海床上,從等深線200公尺處至等深線400公尺處,有平行等深線方向的長條狀特殊地形條帶分布。將此區域內連續變頻聲納資料依其回聲特徵分類成平坦狀 (type 1)、堆狀 (type 2)、透明狀 (type 3)及不規則狀 (type 4) 等四大類又十種型態後,比對回聲特徵的空間分布顯示,長條狀特殊地形條帶與顯示為海底崩移或濁流堆積之type 2-1位置相呼應。且峽谷頭部區域表現出地層發生液化(type 4-1) 及流體移棲 (type 4-3) 所造成之回聲特徵,說明此區域內沈積物孔隙間大多填充液體或氣體。基於觀察結果認為由於區域內海底地下水活動、流體移棲及頻繁地震的發生等因素,造成此區域沈積物較易變形破壞而發生海底塊體運動。
zh_TW
dc.description.abstractSubmarine mass movements occur when the seabed could not sustain the stress applied, then the seafloor material will be transported downdip due to gravitational forces and may cause geohazards. In the area off southwest Taiwan, there were large scale submarine cable breakages after the 2006 Pingtung earthquake, the 2009 Morakot typhoon and the 2010 Jiashian earthquake. Investigation results show that both earthquake-induced submarine landslides and the flood-induced hyperpycnal flows have generated turbidity currents that carried considerable amount of sediments from the upper reach of the Gaoping Submarine Canyon (GPSC) to the Manila Trench, and damaged submarine cables lying across the GPSC. Most of the cable broken sites are along the axis of the GPSC, thus canyon morphology could be an important factor controlling transport processes of submarine mass movements and the sediment gravity flows passing through the crossing cables along their ways, and broke many of them. On the other hand, within a minute after the Pingtung Earthquake, submarine cables were broken at two places in the Fangliao Submarine Canyon (FLSC) area, suggesting that submarine mass movements were triggered on sites by the earthquake nearby.
In this study, we use high-resolution bathymetry data (gridded at 100 m interval) and the cable breakage information (including the times and locations of the breakages) to investigate if the canyon morphology controls submarine cable breakages in the GPSC. We also use high-resolution bathymetry data (50-m grid spacing) and chirp sonar profile data to investigate the possible causes of submarine mass movements in the FLSC.
In the GPSC, this study found that both the 2006 Pingtung earthquake and the 2009 Morakot typhoon have produced two sediment gravity flows each, many cable breakages were recorded along gravity flows 2006-1 and 2009-2, however, not all the cables crossing the GPSC were broken, and there is no obvious threshold on local slope values differentiating sites where cables were broken or not. In addition, the local slope values and the gravity flow speeds between two cable breakage sites in the gravity flow 2006-1 and 2009-2 show little correlation. We thus suggest that the local slope values are not the most important factor controlling whether the submarine cables to be broken or not. In the FLSC area, there are linear topographic features parallel to the isobaths at water depths between 200 to 400 m. Distribution map of different types of chirp sonar echo characters have been established. Four types of echo character patterns (flat, mounded, transparent and irregular) and ten sub-types have been identified in this area, and the echo characters of those topographic liner features suggest that they could be formed by the activities of the submarine landslide or turbidity current (type 2-1). Furthermore, the echo types 4-1 and 4-3 show that the pores of the sediment are filled with the liquids or gases, and there are frequent earthquakes which happened in the FLSC. Therefore, the local geological settings should be an important factor controlling the submarine mass movements in the FLSC.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:29:57Z (GMT). No. of bitstreams: 1
ntu-102-R00241312-1.pdf: 13909513 bytes, checksum: 1f5a0e2826c9af7c9b2ff68dfaf46785 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究區域與方法 2
1.3 論文架構 4
第二章 研究背景介紹 10
2.1 海底塊體運動 10
2.1.1海底塊體運動的定義與形成 10
2.1.2海底塊體運動的分類 12
2.2 海底電纜斷裂事件 21
2.2.1 2006年屏東地震事件 21
2.2.2 2009年莫拉克颱風事件 22
2.2.3 2010年甲仙地震事件 23
第三章 資料來源與處理 32
3.1 水深資料處理與分析 32
3.1.1 地形分析 32
3.1.2水文分析 33
3.2 連續變頻聲納 38
3.2.1 連續變頻聲納簡介 38
3.2.2 連續變頻聲納資料收集 38
3.2.3 連續變頻聲納資料處理 39
3.3 海底電纜斷裂資訊與處理 45
第四章 研究觀察與討論 48
4.1 高屏海底峽谷區域 48
4.1.1 2006年屏東地震事件觀察 48
4.1.2 2009年莫拉克颱風事件觀察 55
4.1.3 綜合討論 61
4.2 枋寮海底峽谷區域 66
4.2.1回聲特徵分類 66
4.2.2 回聲特徵的分布及意義 69
第五章 結論 76
參考文獻 78
附錄 84
dc.language.isozh-TW
dc.title臺灣西南海域重力流引發海底地質災害事件之研究zh_TW
dc.titleA Study on Submarine Geohazards Induced by
Gravity Flows off Southwest Taiwan
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許樹坤(Shu-Kun Hsu),林殿順(Tien-Shun Lin),蘇志杰(Chih-Chieh Su)
dc.subject.keyword海底塊體運動,重力流,海底地質災害,地理資訊系統,連續變頻聲納,zh_TW
dc.subject.keywordsubmarine mass movements,gravity flows,submarine geo-hazards,GIS,chirp sonar,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
13.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved