請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60778完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Shiu-Duo Huang | en |
| dc.contributor.author | 黃旭鐸 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:29:48Z | - |
| dc.date.available | 2016-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] R. Tyson, Principles of adaptive optics, 3rd ed. New York: CRC Press, 2010.
[2] The Lyot Project. Available: http://www.lyot.org/ [3] N. Hubin and L. Noethe, 'Active optics, adaptive optics, and laser guide stars,' Science, vol. 262, pp. 1390-1394, November 26 1993. [4] L. N. Thibos, et al., 'Standards for reporting the optical aberrations of eyes,' Journal of Refractive Surgery, vol. 18, 2002. [5] E. Steinhaus and S. G. Lipson, 'Bimorph piezoelectric flexible mirror,' J. Opt. Soc. Am., vol. 69, pp. 478-481, March 1978. [6] A. N. Simonov, et al., 'Piezoelectric deformable mirror with adaptive multiplexing control,' Optical Engineering, vol. 45, pp. 070501-070501, 2006. [7] S. A. Kokorowski, 'Analysis of adaptive optical elements made from piezolectric bimorphs,' J. Opt. Soc. Am., vol. 69, pp. 181-187, 1979. [8] P. Hyunkyu and D. A. Horsley, 'Single-crystal PMN-PT MEMS deformable mirrors,' Journal of Microelectromechanical Systems, vol. 20, pp. 1473-1482, 2011. [9] P. Y. Lin, et al., 'Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control,' Journal of Optics, vol. 13, p. 055404, 2011. [10] F. Hu, et al., 'A MEMS micromirror driven by electrostatic force,' Journal of Electrostatics, vol. 68, pp. 237-242, 2010. [11] T. G. Bifano, et al., 'Microelectromechanical deformable mirrors,' Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 83-89, 1999. [12] S. S. Sarkisov, et al., 'Light-driven actuators based on polymer films,' Optical Engineering, vol. 45, pp. 034302-034302, 2006. [13] Y. Mizutani, et al., 'Optically driven actuators using poly(vinylidene difluoride),' Optical Review, vol. 15, pp. 162-165, May 1 2008. [14] S. Zaidi, et al., 'Contactless and selective energy transfer to a bistable micro-actuator using laser heated shape memory alloy,' Smart Material and Structures, vol. 21, p. 5027, November 1 2012. [15] Z. L. Wang, 'Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,' Nano Today, vol. 5, pp. 540-552, 2010. [16] K. T. Chen, et al., 'Optically defined modal sensors incorporating spiropyran-doped liquid crystals with piezoelectric sensors,' Sensors, vol. 11, pp. 1810-1818, 2011. [17] K. T. Chen, et al., 'Design and fabrication of a piezoelectric mode 2 sensor based on optical modulated liquid crystal and spiropyran,' Smart Materials and Structures, vol. 20, p. 025018, 2011. [18] K. T. Chen, et al., 'Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film,' Smart Materials and Structures, vol. 21, p. 115025, 2012. [19] F. L. Pedrotti and L. S. Pedrotti, Introduction to optics, 2nd ed. New Jersey: Prentice-Hall International, Inc., 1993. [20] A. Javier, 'Paraxial optics,' in Encyclopedia of Optical Engineering, ed: Taylor & Francis, 2007, pp. 1920-1931. [21] 唐逸中, '二極體雷射光源的波前校正,' 國立台灣大學應用力學研究所碩士論文, 1995. [22] M. Born and E. Wolf, Principles of optics, 4th ed. New York: Pergamon Press Inc., 1970. [23] J. Ruoff and M. Totzeck, 'Orientation Zernike polynomials: a useful way to describe the polarization effects of optical imaging systems,' Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 8, pp. 031404-031404, 2009. [24] P. Y. Maeda. Zernike polynomials and their use in describing the wavefront aberrations of the human eye. Available: http://scien.stanford.edu/pages/labsite/2003/psych221/projects/03/pmaeda/index.html [25] B. C. Platt and R. Shack, 'History and principles of Shack-Hartmann wavefront sensing,' Journal of Refractive Surgery, vol. 17, 2001. [26] C. S. Vikram, 'Phase error effect on contrast measurement in Schwider-Hariharan phase-shifting algorithm,' Optik - International Journal for Light and Electron Optics, vol. 112, pp. 140-141, 2001. [27] 陳昭宇, '高速電子斑點干涉儀之研製:整合雷射都卜勒干涉術與時進相移法之創新設計,' 國立台灣大學應用力學研究所碩士論文, 2005. [28] 李舒昇、王瀚威、曾緯哲、許義鴻、李世光, '時進正交相移法與五一相移法於電子斑點干涉術之設計與研究,' 科儀新知, vol. 29, 2007. [29] C. C. Kao, et al., 'Phase-shifting algorithms for electronic speckle pattern interferometry,' Applied Optics, vol. 41, pp. 46-54, 2002. [30] E. S. Claflin and N. Bareket, 'Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,' Journal of the Optical Society of America A, vol. 3, pp. 1833-1839, 1986. [31] L. Zhu, et al., 'Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,' Applied Optics, vol. 38, pp. 168-176, 1999. [32] S. Trolier-McKinstry, 'Chapter 3: Crystal chemistry of piezoelectric materials,' in Piezoelectric and Acoustic Materials for Transducer Applications, A. Safari and E. K. Akdogan, Eds., ed NewYork: Springer, 2008, pp. 39-56. [33] A. L. Kholkin, et al., 'Chapter 2: Piezoelectricity and crystal symmetry,' in Piezoelectric and Acoustic Materials for Transducer Applications, A. Safari and E. K. Akdogan, Eds., ed NewYork: Springer, 2008, pp. 17-38. [34] 吳朗, 電子陶瓷-壓電: 全欣資訊圖書股份有限公司, 1994. [35] R. W. Whatmore, 'Pyroelectric devices and materials,' Reports on Progress in Physics, vol. 49, pp. 1335-1386, 1986. [36] 周卓明, 壓電力學: 全華圖書股份有限公司, 2003. [37] 邱碧秀, 電子陶瓷材料. 台北市: 財團法人徐氏基金會, 1988. [38] Available: http://www.eleceram.com.tw/index.asp?lang=2 [39] 蕭文欣, '創新壓電變壓/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,' 國立台灣大學應用力學研究所碩士論文, 2000. [40] 'IEEE standard on piezoelectricity,' ANSI/IEEE Std 176-1987, 1988. [41] C. K. Lee, 'Piezoelectric laminates: theory and experiments for distributed sensors and actuators,' in Intelligent Structural Systems, H. S. Tzou and G. L. Anderson, Eds., ed Netherlands Dordrecht: Kluwer Academic Publishers, 1992, pp. 75-167. [42] K. Kadish, et al., The porphyrin handbook, 1 ed. vol. 17: Academic Press, 2002. [43] K. Y. Law, 'Organic photoconductive materials: recent trends and developments,' Chemical Reviews, vol. 93, pp. 449-486, 1993. [44] T. Saito, et al., 'Photocarrier generation processes of phthalocyanines studied by photocurrent and electroabsorption measurements,' Journal of Physical Chemistry, vol. 97, pp. 8026-8031, 1993. [45] W. Hiller, et al., 'Polymorphie, leitfahigkeit und kristallstrukturen von oxo-phthalocyaninato-titan(IV) *,' Zeitschrift fur Kristallographie - Crystalline Materials, vol. 159, pp. 173-183, January 1 1982. [46] K. Oka, et al., 'Study of the crystal structure of titanylphthalocyanine by rietveld analysis and intermolecular energy minimization method,' Japanese Journal of Applied Physics, vol. 31, pp. 2181-2184, May 16 1992. [47] S. Yamaguchi and Y. Sasaki, 'Effect of water on primary photocarrier-generation process in Y-form titanyl phthalocyanine,' The Journal of Physical Chemistry B, vol. 104, pp. 9225-9229, October 1 2000. [48] L. Ling, et al., 'The applications of electric charge generating material (TiOPc) and electric charge transporting material (TPD) on organic photo conductor drum,' Chemistry (The Chinese Chem. SOC., Taipei), vol. 21, pp. 575-584, 2003. [49] Z. D. Popovic and A. Hor, 'Photoconductivity studies of titanyl phthalocyanine,' Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, vol. 228, pp. 75-80, May 1 1993. [50] J. Noolandi and K. M. Hong, 'Theory of photogeneration and fluorescence quenching,' The Journal of Chemical Physics, vol. 70, p. 3230, July 26 1979. [51] W. P. Mason, Electromechanical transducers and wave filters. New York: D. Van Nostrand company, inc., 1942. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60778 | - |
| dc.description.abstract | 本論文嘗試開發具備以光學場調制(modulate)力學場能力的複合材料並將其製作為致動器,其目的為以使用光學場調制的力學場方式來取代傳統透過電極陣列來驅動可撓鏡的操作方式。該複合材料是透過結合TiOPc/copolymer薄膜以及壓電材料PZT (Lead Zirconate Titanate)來製作。本文針對光電導材料(photoconductive material) TiOPc (Titanyl Phthalocyanine)薄膜做了詳盡的電學阻抗分析實驗,以精密阻抗分析儀(Agilent 4294A)進行量測,並建立其等效電路。我們整理並分析TiOPc薄膜的電學特性與薄膜製程參數間的關聯,並建立TiOPc薄膜電學性質變化與光強度間的關係。
我們以電學阻抗匹配的方式來決定TiOPc薄膜的製程參數,製作出TiOPc/壓電致動可撓鏡,並建立其致動器方程式。可撓鏡性能的驗證是以光學量測系統:電子斑點干涉儀(Electronic Speckle Pattern Interferometer, ESPI)來進行可撓鏡的表面變形量測。由實驗結果證實,本研究中所製備的可撓鏡元件可以照光的方式來調制力學場的變化。為了達成可撓鏡的應用,我們試著設計不同的照光圖形來使可撓鏡的表面變形形狀相似於三階像差(aberration)的波前(wavefront)形狀,分析的方式是使用CODE V光學軟體做Zernike多項式(Zernike polynomial)的曲面擬合計算。由結果可得知,本研究所製作之光調控式可撓鏡具備對場曲、像散等三階像差進行補償的能力。 | zh_TW |
| dc.description.abstract | In this thesis, we intended to modify the actuating structure of a traditional deformable mirror which was actuated by an electrode-array. We developed a new smart composite material which could use optical illumination to modulate the spatially distributed actuating forces. The smart composite material is composed of photoconductive material TiOPc (Titanyl Phthalocyanine) and piezoelectric material PZT (Lead Zirconate Titanate) to perform Opto-Piezo modulation. More specifically, spatial modulation in this smart composite is done by using a light field instead of an electrical field to modulate the spatial distribution of the force field created. To enhance the effect of a light field modulated force field, the electrical impedance of TiOPc/copolymer thin film and piezoelectric lamina must match. The electrical impedance of TiOPc thin film was measured by Agilent 4294A Precision Impedance Analyzer and an equivalent circuit model was established. According to the experimental results of the measured electrical impedance, we built the relationship between the parameters of thin film process and the equivalent R-C value in the equivalent circuit model. Further experiments were performed to establish the relationship between light intensity and the R-C value. An actuator equation was also developed for the spatially modulated TiOPc/PZT actuator. ESPI (Electronic Speckle Pattern Interferometer) was then introduced to test the ability of the spatially modulated TiOPc/PZT actuator. The experimental results confirmed the ability of spatial modulation. Furthermore, we used CODE V to perform surface fitting of Zernike polynomial. The spatial modulation by light achieved was identified to be able to compensate third-order aberration such as field curvature and astigmatism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:29:48Z (GMT). No. of bitstreams: 1 ntu-102-R99525102-1.pdf: 9595713 bytes, checksum: 629f960458e0446b6139b72de2ec5771 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 v 圖目錄 vii 表目錄 xi 第 1 章 緒論 1 1.1 研究背景及動機 1 1.2 文獻回顧 3 1.3 論文架構 5 第 2 章 光學像差 6 2.1 近軸光學理論 6 2.2 三階像差與波前形狀 12 2.3 Zernike多項式 19 2.4 波前感測與表面位移量測技術 23 2.4.1 Shack-Hartmann波前感測儀 23 2.4.2 光學干涉儀與相移干涉術 24 2.4.3 表面量測技術-電子斑點干涉儀 27 2.5 可撓鏡與像差補償 30 第 3 章 光調控式壓電致動器 31 3.1 壓電 32 3.1.1 壓電材料簡介 32 3.1.2 本構方程式 37 3.1.3 線性壓電薄板理論與致動器方程式 40 3.2 有機光電導材料:TiOPc 45 3.2.1 TiOPc光電導特性 45 3.2.2 TiOPc薄膜電學阻抗測量原理及實驗架構 49 3.2.3 TiOPc薄膜電阻抗量測實驗結果 52 3.2.4 等效電路分析 65 3.3 元件設計及製作 73 3.3.1 壓電致動器與TiOPc薄膜的電學阻抗匹配 73 3.3.2 光調控式可撓鏡的元件製作 80 第 4 章 光調控式可撓鏡 81 4.1 元件的致動器方程式及有限元素模擬 81 4.1.1 光調控式可撓鏡的致動器方程式 81 4.1.2 有限元素模擬 83 4.2 靜態表面變形量測實驗結果 86 第 5 章 結論及未來展望 93 5.1 結論 93 5.2 未來展望 94 參考文獻 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電材料 | zh_TW |
| dc.subject | 光電導材料 | zh_TW |
| dc.subject | 可撓鏡 | zh_TW |
| dc.subject | 電阻抗 | zh_TW |
| dc.subject | 像差 | zh_TW |
| dc.subject | Zernike多項式 | zh_TW |
| dc.subject | electrical impedance | en |
| dc.subject | piezoelectric material | en |
| dc.subject | Zernike polynomial | en |
| dc.subject | photoconductive material | en |
| dc.subject | aberration | en |
| dc.subject | deformable mirror | en |
| dc.title | 以TiOPc/壓電圓板設計可撓鏡的研發 | zh_TW |
| dc.title | Design and Construction of Deformable Mirror Using A Spatially Modulated TiOPc/Piezo Actuator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),林致廷,黃君偉(Jiun-Woei Huang),吳光鐘(Kuang-Chong Wu),張晉愷 | |
| dc.subject.keyword | 壓電材料,光電導材料,可撓鏡,電阻抗,像差,Zernike多項式, | zh_TW |
| dc.subject.keyword | piezoelectric material,photoconductive material,deformable mirror,electrical impedance,aberration,Zernike polynomial, | en |
| dc.relation.page | 99 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
