Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞(Hung-Chun Chang)
dc.contributor.authorShian-Min Chiouen
dc.contributor.author邱獻民zh_TW
dc.date.accessioned2021-06-16T10:29:27Z-
dc.date.available2018-08-23
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation[1] Albani, M., and P. Bernardi, 'A numerical method based on the discretization of Maxwell equations in integral form,' IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446-450, 1974.
[2] Alu, A., and N. Engheta, 'Tuning the scattering response of optical nanoantennas with nanocircuit loads,' Nature Photon., vol. 2, pp. 307-310, 2008.
[3] Alu, A., and N. Engheta, 'Optical nanoswitch: An engineered plasmonic nanoparticle with extreme parameters and giant anisotropy,' New J. Phys., vol. 11, 013026, 2009.
[4] Alu, A., and N. Engheta, 'Optical metamaterials based on optical nanocircuits,'Proc. IEEE, vol. 99, pp. 1669-1681, 2011.
[5] Alu, A., A. Salandrino, and N. Engheta, 'Parallel, series, and intermediate interconnections of optical nanocircuit elements. 2. Nanocircuit and physical interpretation,' J. Opt. Soc. Am. B, vol. 24, pp. 3014-3022, 2007.
[6] Alu, A., E. Michael, Young, and N. Engheta, 'Design of nanofilters for optical nanocircuits,' Phys. Rev. B, vol. 77, 144107, 2008.
[7] Bakker, R. M., A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, 'Near-field excitation of nanoantenna resonance,' Opt. Express, vol. 15, pp. 13682-13688, 2007.
[8] Berenger, J. P., 'A perfectly matched layer for the absorption of electromagnetic waves,' J. Comput. Phys., vol. 114, pp. 185-200, 1994.
[9] Byun, K. M., and S. J. Kim, 'Design study of highly sensitive nanowire enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,' Opt. Express, vol. 13, pp. 3737-3742, 2005.
[10] Courant, R., K. Friedrichs, and H. Lewy, 'Uber die partiellen differenzengleichungen der mathematischen physik,' Math. Ann., vol. 100, pp. 32-74, 1928.
[11] Ding, W., R. Bachelot, R. E. Lamaestre, D. Macias, A. L. Baudrion, and P. Royer, 'Understanding near/far-field engineering of optical dimer antennas through geometry modification,' Opt. Express, vol. 17, pp. 21228-21239, 2009.
[12] Drude, P., 'Zur elektronentheorie der metalle,' Ann. Phys., vol. 1, pp. 566-613, 1900.
[13] Engheta, N., 'From RF circuits to optical nanocircuits,' IEEE Microwave Magazine, vol. 13, pp. 100-113, 2012.
[14] Engheta, N., 'Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials,' Science, vol. 317, pp. 1698-1702, 2007.
[15] Engheta, N., A. Salandrino, and A. Alu, 'Circuit elements at optical frequencies: Nanoinductors, nanocapacitors, and nanoresistors,' Phys. Rev. Lett., vol. 95, 095504, 2005.
[16] Enoch, S., R. Quidant, and G. Badenes, 'Optical sensing based on plasmon coupling in nanoparticle arrays,' Opt. Express, vol. 12, pp. 3422-3427, 2004.
[17] Fisher, H., and O. J. F. Martin, 'Engineering the optical response of plasmonic nanoantenna,' Opt. Express, vol. 16, pp. 9144-9154, 2008.
[18] Harrington, R.F., 'The method of moments in electromagnetics,' J. Electromagn. Waves Appl., vol. 1, pp. 181-200, 1987.
[19] Holland, R., and K. S. Cho, Alternating-direction implicit differencing of Maxwell's equations: 3D results, Computer Sciences Corp., Albuquerque, NM, Technical Report to Harry Diamond Labs., Adelphi, MD, Contract DAAL02-85-C-0200, June 1, 1986.
[20] Jiasen, Z., J. Yang, X. Wu, and Q. Gong, 'Electric field enhancing properties of the V-shaped optical resonant antennas,' Opt. Express, vol. 15, pp. 16852-16859, 2007.
[21] Kelley, D. F., and R. J. Luebbes, 'Piecewise linear recursive convolution for dispersive media using FDTD,' IEEE Trans. Antennas Propagat., vol. 44, pp. 792-797, 1996.
[22] Kern, A. M., and O. J. F. Martin, 'Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,' J. Opt. Soc. Am. A, vol. 26, pp. 732-740, 2009.
[23] Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Edition, Prentice-Hall, 1988.
[24] Kettunen, H., H.Wallen, and A. Sihvola, 'Electrostatic response of a half-disk,' J. Electrostatics, vol. 67, pp. 890-897, 2009.
[25] Kettunen, H., H. Wallen, and A. Sihvola, 'Electrostatic resonances of a negative-permittivity hemisphere,' J. Appl. Phys., vol. 103, 094112, 2008.
[26] Li, J., A. Salandrino, and N. Engheta, 'Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,' Phys. Rev. B, vol. 76, pp. 245403-245407, 2007.
[27] Liaw, J. W., 'Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission,' IEEE J. Sel. Top. Quantum Electron., vol. 14, pp. 1441-1447, 2008.
[28] Liu, Q. H., 'The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell's equations,' Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122-125, 1997.
[29] Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, New York, 2007.
[30] Mie, G., 'Beitrage zur optik trber medien, speziell kolloidaler metallosungen,' Annalen der Physik, vol. 330, pp. 377-445, 1908.
[31] Muskens, O. L., V. Giannini, J. A. Sanchez-Gil, and J. G. Rivas, 'Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,' Opt. Express, vol. 15, pp. 17736-17746, 2007.
[32] Nien, C., Developing on Object-Oriented FDTD Framework with Parallel Kernel for Analyzing Two-Dimensional Plasmonic Nanostructures and Waveguide Devices. Master thesis, National Taiwan University, 2011.
[33] Okoniewski, M., M. Mrozowski, and M. A. Stuchly, 'Simple treatment of multiterm dispersion in FDTD,' IEEE Microwave Guided Wave Lett., vol. 7, pp. 121-123, 1997.
[34] Polemi, A., A. Alu, and N. Engheta. 'Nanocircuit loading of plasmonic waveguides,' IEEE Trans. Antennas Propagat., vol. 60, pp. 4381-4390, 2012.
[35] Roden, J. A., and S. D. Gedney, 'Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,' Microwave Opt. Technol. Lett., vol. 27, pp. 334-339, 2000.
[36] Salandrino, A., A. Alu, and N. Engheta, 'Parallel, series, and intermediate interconnections of optical nanocircuit elements. 1. Analytical solution,' J. Opt. Soc. Am. B, vol. 24, pp. 3007-3013, 2007.
[37] Sederberg, S., and A. Y. Elezzabi, 'Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared,' Opt. Express, vol. 19, pp. 15532-15537, 2011.
[38] Silveirinha, M. G., A. Alu, J. Li, and N. Engheta, 'Nanoinsulators and nanoconnectors for optical nanocircuits,' J. Appl. Phys., vol. 103, 064305, 2008.
[39] Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, 'Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,' Nano Lett., vol. 6, pp. 355-360, 2006.
[40] Sun, Y., B. Edwards, A. Alu, N. Engheta, 'Experimental realization of optical lumped nanocircuits at infrared wavelengths,' Nat. Mater., vol. 11, pp. 208-212, 2012.
[41] Taflove, A., and M. Brodwin, Computation Electromagnetics: The Finite-Difference Time-Domain Method. Norwood, MA: Artech House, 2005.
[42] Vial, A., A. Grimault, D. Macias, D. Barchiesi, M. L. Chapelle, 'Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,' Phys. Rev. B, vol. 71, 085416, 2005.
[43] Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, 'Nanolithography using high transmission nanoscale bowtie apertures,' Nano Lett., vol. 6, pp. 361-364, 2006.
[44] Weiland, T., 'A discretization model for the solution of Maxwell's equations for six-component fields,' Electron. Commun. (AEU), vol. 31, pp. 116-120, 1977.
[45] Xu, H., E. J. Bjerneld, M. Kall, and L. Borjesson, 'Spectroscopy of single hemoglobin molecules by Surface Enhanced Raman Scattering,' Phys. Rev. Lett., vol. 83, 4357-4360, 1999.
[46] Yee, K., 'Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,' IEEE Trans. Antennas Propaga., vol. 14, pp. 302-307, 1966.
[47] Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, 'Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,' Nano Lett., vol. 10, pp. 1006-1011, 2010.
[48] Zhang, Z., A. Weber-Bargioni, S. W. Wu, S. Dhuey, S. Cabrini, and P. J. Schuck, 'Manipulating nanoscale light fields with the asymmetric bowtie nanocolor-sorter,' Nano Lett., vol. 9, pp. 4505-4509, 2009.
[49] Zienkiewicz, O. C., and Y. K. Cheung, 'Finite elements in the solution of field problems,' The Engineer, vol. 220, pp. 507-510, 1965.
[50] http://www.ansys.com
[51] http://www.comsol.com
[52] http://www.home.agilent.com
[53] http://www.cst.com
[54] http://www.lumerical.com
[55] http://www.remcom.com
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60770-
dc.description.abstract時域有限差分法被廣泛地運用在電磁模擬上。我們利用C 語言建構了一個平行化三維時域有限差分模擬器,並利用多台電腦透過訊息傳遞介面協定來加速模擬。本論文中,我們利用這個自行建構的平行化時域有限差分模擬器來模擬兩種金屬奈米結構問題。第一部份,我們模擬了四種奈米天線,包含領結天線、偶極天線、環形領結天線以及修正型環形領結天線。我們計算天線間隙之局部場增強,包含其頻譜響應及共振波長。接著,我們討論改變天線結構對共振行為造成的影響,結果顯示共振波長及場增強倍數和這些結構參數有明顯的相關性。為了微小化天線,我們加入新的結構參數到傳統領結天線中,使得傳統領結天線成為環形領結天線或修正型環形領結天線。模擬結果顯示我們可以在不增大天線尺寸的條件下使共振波長紅移,並且透過調變這些新加入的結構參數來操控共振波長。本論文第二部分為光學奈米電路元件。在光波頻段中,我們將金屬與介質用並聯或串聯的方式連接,並利用此複合式結構來實現奈米濾波器。我們把奈米帶通濾波器或帶拒濾波器放置在波導管內,並計算其穿透係數,計算結果顯示時域有限差分法吻合電路理論。接著,我們計算由兩半球所組合成的三維奈米圓球之電位分布,當此兩半球在接近共振條件的情形下被激發,球外會產生相似於完美電導體球或完美磁導體球的電位分布。zh_TW
dc.description.abstractThe finite-difference time-domain method (FDTD) has been widely used in computational electromagnetics. We construct a parallelized three-dimensional (3D) FDTD simulator in C language where several computers are used to speed-up the simulations by using the message passing interface (MPI) protocol. In this research, we use this self-constructed parallelized FDTD simulator to simulate two kinds of metal nano-particle problems. On the first part, we simulate four types of nano-antennas which are bowtie antenna, dipole antenna, contour bowtie antenna, and modified contour bowtie antenna. The local field enhancement in the antenna gap is calculated, including the broadband response and the resonant wavelength. We explore the behavior of resonances by varying the antenna geometry parameters, and the results show that these parameters will significantly influence the resonant wavelength and its peak value. For miniaturization, we add some new structural parameters into the traditional bowtie antenna, and therefore the bowtie antenna becomes a contour bowtie or modified contour bowtie antenna. The results show that these two contour antennas can red-shift the resonant wavelength without increasing the size of the antenna, and the resonant wavelength is tunable through these new added structure parameters. The second part relates to the nano-elements for optical nano-circuits. The composite nanostructures of metal and dielectric are combined in parallel or series to realize nano-filters at optical frequencies. We put the band-pass or band-stop filters in the waveguide, and the transmission coefficient is calculated. The results show that the FDTD simulations match the circuit theory calculations. Then, we calculate the electric potential distributions around the 3-D nano-spheres which consist of two hemispheres. When two hemispheres are excited near the resonant condition, the potential distributions outside the sphere become similar to the one produced by a homogeneous perfect-electric-conductor (PEC) or a perfect-magnetic-conductor (PMC) sphere.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:29:27Z (GMT). No. of bitstreams: 1
ntu-102-R00942085-1.pdf: 13972309 bytes, checksum: 29e16af827353aef7c4aa50935e94691 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetics . . . . . . . . . . . . 2
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 The Finite-Difference Time-Domain Method for Electromagnetics 7
2.1 Yee Algorithm for Maxwell's Equations . . . . . . . . . . . . . . . . . 7
2.2 Numerical Stability: The Courant Stability Limit . . . . . . . . . . . 9
2.3 Modeling of Dispersive Materials in the FDTD Method . . . . . . . . 10
2.3.1 The Drude Material . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Modeling Drude Material in the FDTD Method Using the ADE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Perfectly Matched Layer (PML): Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Parallelized FDTD Method . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Comparisons between Analytical Calculations and FDTD Simulations 18
2.6.1 2-D FDTD Simulator Examination . . . . . . . . . . . . . . . 19
2.6.2 3-D FDTD Simulator Examination . . . . . . . . . . . . . . . 19
3 Numerical Investigation of Field Enhancement in Plasmonic Nano-Antennas 29
3.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Simulations of Various Nano-Antennas . . . . . . . . . . . . . . . . . 30
3.2.1 Simulations of the Bowtie Nano-Antenna . . . . . . . . . . . . 30
3.2.2 Simulations of the Dipole Nano-Antenna . . . . . . . . . . . . 32
3.2.3 Comparisons Between Bowtie and Dipole Nano-Antennas . . . 33
3.3 Red-Shift of the Nano-Antenna . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Simulations of the Contour Bowtie Nano-Antenna . . . . . . . 34
3.3.2 Simulations of the Modified Contour Bowtie Nano-Antenna . . 35
4 Simulations of Nano-Elements for Optical Nano-Circuits 67
4.1 Introduction and Overview . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Nano-Circuits Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Simulations of Nano-Filters in the 2-D Nano-Circuit . . . . . . . . . . 69
4.3.1 Band-Pass Filter in the Parallel-Plate Waveguide . . . . . . . 69
4.3.2 Band-Stop Filter in the Parallel-Plate Waveguide . . . . . . . 71
4.4 Simulations of 3-D Composite Nano-Spheres . . . . . . . . . . . . . . 72
4.4.1 Serial Combination of Two Hemispheres . . . . . . . . . . . . 72
4.4.2 Parallel Combination of Two Hemispheres . . . . . . . . . . . 74
5 Conclusion 93
Bibliography 95
dc.language.isoen
dc.subject時域有限差分法zh_TW
dc.subject表面電漿子zh_TW
dc.subject奈米天線zh_TW
dc.subject奈米元件zh_TW
dc.subject奈米濾波器。zh_TW
dc.subjectnano-antennasen
dc.subjectsurface plasmonsen
dc.subjectnano-elementsen
dc.subjectnano-filters.en
dc.subjectFDTDen
dc.title以平行化時域有限差分法分析三維奈米天線與奈米電路元件zh_TW
dc.titleAnalysis of Three-Dimensional Nano-Antennas and Nano-Elements Using the Parallelized Finite-Difference Time-Doman Methoden
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗哲,鄧君豪
dc.subject.keyword時域有限差分法,表面電漿子,奈米天線,奈米元件,奈米濾波器。,zh_TW
dc.subject.keywordFDTD,surface plasmons,nano-antennas,nano-elements,nano-filters.,en
dc.relation.page100
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
13.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved