請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60765完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
| dc.contributor.author | Hsin-Hua Chan | en |
| dc.contributor.author | 詹欣華 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:29:14Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 參考文獻
1.黃玉元:半導體產業總體環境分析。資產管理期刊 2010;11:46-57。 2.李聯雄、張富貴:LED照明光電產業製程危害之調查研究。行政院勞工委員會勞工安全衛生研究所,IOSH100-A310,2012。 3.劉立文:高科技行業使用新興材料職業衛生危害性調查研究。行政院勞工委員會勞工安全衛生研究所,IOSH97-H305,2009。 4.施敏、梅凱瑞:半導體製程概論。林鴻志翻譯,初版,新竹:國立交通大學出版社,2008。 5.Shenai-Khatkhate DV, Goyette RJ, DiCarlo Jr RL, Dripps G. Environment, health and safety issues for sources used in MOVPE growth of compound semiconductors. Journal of Crystal Growth 2004;272:816-21. 6.陳旺儀、陳振和、劉立文、張振平、李文亮:金屬有機化合物安全資料表適用性評估。勞工安全衛生研究季刊 2011;19:2-11。 7.Fowler BA, Sexton MJ. Chapter 27 - Gallium and semiconductor compounds. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L, eds. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic Press, 2007;547-55. 8.Barbalace K. Periodic table of elements – Gallium – Ga. Available at: http://environmentalchemistry.com/yogi/periodic/Ga.html. Accessed on Jun 17, 2013. 9.Chitambar CR. Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 2010;7:2337-61. 10.Sheehy JW, Jones JH. Assessment of arsenic exposures and controls in gallium arsenide production. Am Ind Hyg Assoc J 1993;54:61-9. 11.Ivanoff CS, Ivanoff AE, Hottel TL. Gallium poisoning: a rare case report. Food Chem Toxicol 2012;50:212-5. 12.Betoulle S, Etienne JC, Vernet G. Acute immunotoxicity of gallium to carp (Cyprinus carpio L.). Bull Environ Contam Toxicol 2002;68:817-23. 13.Lin HC, Hwang PP. Acute and chronic effects of gallium chloride (GaCl3) on tilapia (Oreochromis mossambicus) larvae. Bull Environ Contam Toxicol 1998;60:931-5. 14.Fowler BA. Chapter 29 - Indium. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L, eds. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic Press, 2007;569-76. 15.Morgan DL, Shines CJ, Jeter SP, Morgan, Daniel L, Wilson RE, Elwell MP, Price HC, Moskowitz PD. Acute pulmonary toxicity of copper gallium diselenide, copper indium diselenide, and cadmium telluride intratracheally instilled into rats. Environ Res 1995;71:16-24. 16.Gottschling BC, Maronpot RR, Hailey JR, Peddada S, Moomaw CR, Klaunig JE, Nyska A. The role of oxidative stress in indium phosphide-induced lung carcinogenesis in rats. Toxicol Sci 2001;64:28-40. 17.Homma S, Miyamoto A, Sakamoto S, Kishi K, Motoi N, Yoshimura K. Pulmonary fibrosis in an individual occupationally exposed to inhaled indium-tin oxide. Eur Respir J 2005;25:200-4. 18.Hamaguchi T, Omae K, Takebayashi T, Kikuchi Y, Yoshioka N, Nishiwaki Y, Tanaka A, Hirata M, Taguchi O, Chonan T. Exposure to hardly soluble indium compounds in ITO production and recycling plants is a new risk for interstitial lung damage. Occup Environ Med 2008;65:51-5. 19.Nakano M, Omae K, Tanaka A, Hirata M, Michikawa T, Kikuchi Y, Yoshioka N, Nishiwaki Y, Chonan T. Causal relationship between indium compound inhalation and effects on the lungs. J Occup Health 2009;51:513-21. 20.Sjögren B, Iregren A, Elinder CG, Yokel RA. Chapter 17 - Aluminum. In: Nordberg GF, Fowler BA, Nordberg M, Friberg L, eds. Handbook on the toxicology of metals. 3rd ed. Burlington: Academic Press, 2007;339-52. 21.Chan-Yeung M, Wong R, MacLean L, Wong R, MacLean L, Tan F, Schulzer M, Enarson D, Martin A, Dennis R, Grzybowski S. Epidemiologic health study of workers in an aluminum smelter in British Columbia. Effects on the respiratory system. Am Rev Respir Dis 1983;127:465-9. 22.van Rooy FG, Houba R, Stigter H, Zaat V, Zengeni MM, Rooyackers JM, Boers HE, Heederik DJJ. A cross-sectional study of exposures, lung function and respiratory symptoms among aluminium cast-house workers. Occup Environ Med 2011;68:876-82. 23.Moe SM. Disorders involving calcium, phosphorus, and magnesium. Prim Care 2008;35:215-37. 24.NIOSH Pocket Guide to Chemical Hazards. Available at: http:// www.cdc.gov/ niosh/npg. Accessed on Jun 25, 2013. 25.葉文裕、鄭曼婷、袁中新等人:氣膠原理與應用。行政院勞工委員會勞工安全衛生研究所,1996。 26.Koch W, Dunkhorst W, Lödding H, Thomassen Y, Skaugset NP, Nikanov A, Vincent J. Evaluation of the Respicon as a personal inhalable sampler in industrial environments. J Environ Monit 2002;4:657-62. 27.蔡春進:職場微粒分徑採樣之評估研究。行政院勞工委員會勞工安全衛生研究所,IOSH94-A102,2006。 28.Li SN, Lundgren DA, Rovell-Rixx D. Evaluation of six inhalable aerosol samplers. Am Ind Hyg Assoc J 2000;61:506-16. 29.Schneider T, Cherrie JW, Vermeulen R, Kromhout H. Dermal exposure assessment. Ann Occup Hyg 2000;44:493-9. 30.Nylander-French LA. A tape-stripping method for measuring dermal exposure to multifunctional acrylates. Ann Occup Hyg 2000;44:645-51. 31.Chao YC, Nylander-French LA. Determination of keratin protein in a tape-stripped skin sample from jet fuel exposed skin. Ann Occup Hyg 2004;48:65-73. 32.Hostýnek JJ, Dreher F, Pelosi A, Anigbogu A, Maibach HI. Human stratum corneum penetration by nickel. In vivo study of depth distribution after occlusive application of the metal as powder.. Acta Derm Venereol 2001;212(suppl):5-10. 33.Dunster HJ. Surface contamination measurements as an index of control of radioactive materials. Health Phys 1962;8:353-6. 34.Lidén C, Skare L, Lind B, Nise G, Vahter M. Assessment of skin exposure to nickel, chromium and cobalt by acid wipe sampling and ICP‐MS. Contact Dermatitis 2006;54:233-8. 35.Julander A, Skare L, Mulder M, Grandér M, Vahter M, Lidén C. Skin deposition of nickel, cobalt, and chromium in production of gas turbines and space propulsion components. Ann Occup Hyg 2010;54:340-50. 36.Du Plessis JL, Eloff FC, Badenhorst CJ, Olivier J, Laubscher PJ, Van A, Michiel N, Franken A. Assessment of dermal exposure and skin condition of workers exposed to nickel at a South African base metal refinery. Ann Occup Hyg 2010;54:23-30. 37.行政院勞工委員會:甲級化學性因子勞工作業環境測定人員訓練教材。行政院勞工委員會,66-79,2006。 38.Peyster A, Silvers JA. Arsenic levels in hair of workers in a semiconductor fabrication facility. Am Ind Hyg Assoc J 1995;56:377-83. 39.Hwang YH, Lee ZY, Wang JD, Hsueh YM, Lu IC, Yao WL. Monitoring of arsenic exposure with speciated urinary inorganic arsenic metabolites for ion implanter maintenance engineers. Environ Res 2002;90:207-16. 40.Ungers LJ, Jones JH. Industrial hygiene and control technology assessment of ion implantation operations. Am Ind Hyg Assoc J 1986;47:607-14. 41.Liao YH, Yu HS, Ho CK, Wu, MT, Yang CY, Chen JR, Chang, CC. Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers. J Occup Environ Med 2004;46:931-6. 42.Chen HW. Exposure and health risk of gallium, indium, and arsenic from semiconductor manufacturing industry workers. Bull Environ Contam Toxicol 2007;78:123-7. 43.LaDou J, Bailar JC. Cancer and reproductive risks in the semiconductor industry. Int J Occup Environ Health 2007;13:376-85. 44.Park D, Yang H, Jeong J, Ha K, Choi S, Kim C, Yoon C. A comprehensive review of arsenic levels in the semiconductor manufacturing industry. Ann Occup Hyg 2010;54:869-79. 45.Baldwin DG, King BW, Scarpace LP. Ion implanters: chemical and radiation safety. Solid State Technol 1998;31:99-105. 46.McCarthy CM. Worker exposures during maintenance of ion implanters in the semiconductor industry [Thesis]. Salt Lake, Utah: The University of Utah; 1984;94. 47.Thomasen JM, Nylander-French LA. Penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate monomer in human skin. J Environ Monit 2012;14:951-60. 48.王明光、王敏昭:實用儀器分析。初版。台北市:合記圖書出版社,2003。 49.史庫格、里瑞:儀器分析。林敬二、林宗義編譯,初版,台北市:美亞書版股份有限公司,1994。 50.McDonald LT, Rasmussen PE, Chénier M, Levesque C. Extending wipe sampling methodologies to elements other than lead. J Environ Monit 2011;13:377-83. 51.Manini P, De Palma G, Mutti A. Exposure assessment at the workplace: implications of biological variability. Toxicol Lett 2007;168:210-8. 52.HSDB (Hazardous Substances Data Bank). Available at: http://toxnet.nlm.nih. gov/cgi-bin/ sis/htmlgen?HSDB. Accessed on Jun 17, 2013. 53.Semi S2-0200 fire safety evaluation checklist for semiconductor equipment using hazardous production materials. Available at: http://www.semi.org/cms/ groups/public/documents/web_content/p036485.pdf. Accessed on Jun 15, 2013. 54.U.S. Geological Survey. Mineral commodity summaries 2013. Available at: http://minerals.usgs.gov/minerals/pubs/mcs/2013/mcs2013.pdf. Accessed on Jun 17, 2013. 55.林彥輝、葉文裕:半導體作業安全衛生危害之探討―SEMI安全指引與國內法規比較。行政院勞工委員會勞工安全衛生研究所,IOSH87-H329,1998。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60765 | - |
| dc.description.abstract | 背景:由於近年來各國政府開始禁售白熾燈泡,LED(Light Emitting Diode)漸漸取代傳統照明,自2008到2012年以來全球LED產值成長率高達100%以上。有機金屬化學氣相沉積(metal organic chemical vapor deposition, MOCVD)為製造LED的重要製程之一,但所使用的有機金屬化學物質對人體的健康效應卻仍不清楚。MOCVD機台需定期由工程師將其拆開進行維修保養(preventive maintenance),此時機台內部的製程殘餘物質可能逸散至環境中,造成維修保養工程師暴露之危害。
目的:了解維修工程師進行MOCVD機台維修保養作業時,潛在環境金屬暴露的情形;釐清機台維修過程中金屬化學物質暴露機會較高的作業內容;並評估維修工程師是否會將金屬物質帶離維修工作現場,造成二次汙染。 方法:利用直讀式儀器、沾黏採樣、擦拭採樣、空氣採樣等方法,針對某一LED廠MOCVD機台維修作業環境及不同作業單元進行採樣,並將樣本微波消化後利用感應耦合電漿質譜儀分析樣本中金屬濃度。 結果:維修保養作業當日環境中的懸浮微粒數目濃度高於非維修保養作業日約20-1600倍。沾黏採樣結果顯示維修保養作業後有相對較多金屬累積於手掌及手腕部位,樣本中最高鎵金屬含量分別為0.037及0.036 µg/cm2。重複使用的無塵衣物及防護具表面會殘留金屬,成為二次汙染源。擦拭採樣發現維修保養作業後會有大量的金屬物質留存於環境中,其樣本鎵金屬含量平均值為859.9 µg/100 cm2,最高值可達7399 µg/100 cm2。空氣採樣結果顯示,工程師在擦拭上蓋及擦拭零件等作業單元中暴露金屬的機會最高。 結論:本研究利用現場實測的數據,證實維修保養作業工程師有潛在暴露金屬物質之風險,其中鎵金屬之暴露量最高。同時應用空氣採樣、沾黏採樣、擦拭採樣等採樣方式,對此類作業時間短但環境中有高濃度金屬暴露的作業場所進行採樣,可有效協助評估吸入及皮膚暴露途徑的潛在風險。本研究期許能促使工業界及政府開始重視使用新興化學物質所衍生之問題,了解、改善作業環境之重要性,並可作為未來制定法規之參考依據。 | zh_TW |
| dc.description.abstract | Background: In recent years, as the sale of incandescent light bulb is prohibited in many countries, LED (Light Emitting Diode) products gradually replaced the traditional lights, and the global LED production value grew by more than 100% during 2008-2012. Metal-containing chemical substances were widely used in the LED optoelectronics industry for metal organic chemical vapor deposition (MOCVD). However, the health effects of these chemicals remain unclear. Preventive maintenance engineers working on MOCVD are potentially exposed to residues of toxic metals resulted from maintenance task through skin contact or inhalation.
Objectives: To characterize potential metal exposure for engineers during their preventive maintenance on MOCVD, to clarify the tasks with relative high risk of metal exposure, and to verify if any metal residuals disseminated from working site by the preventive maintenance engineers. Materials and Methods: Direct-reading instrument, tape-strip sampling, wipe sampling, and air sampling were applied in this study to profile the metal exposure in the working environment by task during the MOCVD preventive maintenance. Collected samples were first digested with microwave and the metal concentrations were determined by inductively coupled plasma mass spectrometer. Results: The count concentration of particulates suspended in the work environment during preventive maintenance was 20-1600 times higher than non-maintenance work. Results of tape-strip samples showed that the highest amount of gallium accumulated on engineers’ palm and wrist after the preventive maintenance work, with maximum gallium of 0.037 and 0.036 µg/cm2, respectively. Besides, metal residues were detected on the surface of reused cleanroom clothing and personal protective equipment, which might cause secondary pollution. Results of wipe sample analysis showed that there were high amounts of metal residues in the environment after preventive maintenance work, and the average gallium loading on floor wipe samples was 859.9 µg/100 cm2, and the highest one was 7399 µg/100 cm2. Air samples showed the preventive engineers might be occupationally exposed to substantial metals during the MOCVD preventive maintenance, especially in the tasks of shelters cleaning and parts cleaning. Conclusions: In this study, we confirmed that the maintenance engineers might be potentially exposed to metal substances, especially for gallium. It’s demonstrated that simultaneously applying air sampling, tape-strip sampling, and wipe sampling methods would facilitate the evaluation of potential risks of metal exposure through inhalation and dermal exposure routes in this kind of workplace. It’s appropriate to use these methods in environmental monitoring for high metal concentration during a specific short-time task. It’s also expected that our findings would urge the industry and the government to pay more attention to the relevant issues resulted from the use of emerging chemicals, and to appreciate the importance of improving the working environment. In addition, these findings could also be used as references for the establishment of related regulations in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:29:14Z (GMT). No. of bitstreams: 1 ntu-102-R00841017-1.pdf: 7750946 bytes, checksum: 5ca2bc74fd367375ef304ac8c05fc0f5 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 I 致謝 II 摘要 III ABSTRACT V 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻探討 3 2.1 發光二極體(LED) 3 2.1.1 LED介紹及製造流程 3 2.1.2 有機金屬化學氣相沉積設備 3 2.2 金屬有機化合物 4 2.2.1 金屬有機化合物簡介與物化特性 4 2.2.2 金屬的使用與健康效應 5 2.2.3 現行相關金屬暴露規範 9 2.3 採樣設備及方法介紹 9 2.3.1 採樣設備 9 2.3.2 採樣方法 11 2.4 半導體產業職場作業環境採樣設計及製程殘餘物質暴露 13 2.4.1 採樣設計 13 2.4.2 製程殘餘物質暴露 14 第三章 材料與方法 16 3.1 研究架構及研究對象 16 3.2 維修保養作業流程 18 3.3 樣本採集 19 3.3.1 採樣材料及設備 19 3.3.2 環境測定- LasairⅡ-110粒子計數器 20 3.3.3 個人測定-沾黏採樣(tape-strip sampling)方法 20 3.3.4 環境測定-擦拭採樣(wipe sampling)方法 21 3.3.5 環境測定-空氣採樣(air sampling)方法 22 3.4 樣本分析 23 3.4.1 試藥與試劑 23 3.4.2 樣本微波消化處理 25 3.4.3 感應耦合電漿質譜儀使用 25 3.4.4 樣本多元素分析檢量線配製 27 3.5 分析方法之品質管制 27 3.5.1 儀器調校 27 3.5.2 品質管制 28 3.5.3 偵測極限 28 3.6 統計分析 28 第四章 研究結果 30 4.1 環境中懸浮微粒數目濃度變化情形 30 4.2 沾黏採樣樣本金屬成份分析結果 30 4.3 擦拭採樣樣本金屬成份分析結果 36 4.4 空氣採樣樣本金屬成份分析結果 37 第五章 討論 39 5.1 環境及個人採樣結果探討 39 5.1.1 環境中懸浮微粒數目濃度變化情形探討 39 5.1.2 沾黏採樣結果探討 40 5.1.3 擦拭採樣結果探討 43 5.1.4 空氣採樣結果探討 44 5.2 相關研究結果之比較與探討 45 5.2.1 維修保養作業與環境中的製程殘餘物質 45 5.2.2 採樣設計之比較 46 5.3 與現行法規探討 49 5.4 現場改善及建議 51 5.4.1 作業現場環境改善 51 5.4.2 人員行為改善 53 5.4.3 呼吸防護清潔改善 55 5.4.4 維修保養後續處理 55 5.5 未來展望 55 第六章 結論 57 參考文獻 59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鎵 | zh_TW |
| dc.subject | 擦拭採樣 | zh_TW |
| dc.subject | 沾黏採樣 | zh_TW |
| dc.subject | 空氣採樣 | zh_TW |
| dc.subject | 維修保養作業 | zh_TW |
| dc.subject | MOCVD | zh_TW |
| dc.subject | gallium | en |
| dc.subject | preventive maintenance work | en |
| dc.subject | air sampling | en |
| dc.subject | tape-strip sampling | en |
| dc.subject | wipe sampling | en |
| dc.subject | MOCVD | en |
| dc.title | 半導體產業MOCVD機台維修工程師金屬物質暴露情形之探討 | zh_TW |
| dc.title | Metal exposure of preventive maintenance engineers during their works on MOCVD in the semiconductor industry | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡詩偉(Shin-Wei Tsai,),李壽南(Shou-Nan Li) | |
| dc.subject.keyword | MOCVD,維修保養作業,空氣採樣,沾黏採樣,擦拭採樣,鎵, | zh_TW |
| dc.subject.keyword | MOCVD,preventive maintenance work,air sampling,tape-strip sampling,wipe sampling,gallium, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 7.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
