Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorSyuan-Huei Hongen
dc.contributor.author洪瑄徽zh_TW
dc.date.accessioned2021-06-16T10:29:07Z-
dc.date.available2016-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation[1] Y. Abbasi-Yadkori, J. Modayil, and C. Szepesvari, 'Extending
rapidly-exploring random trees for asymptotically optimal anytime motion
planning,' Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, Taipei, Taiwan, Vol. 39, pp. 127-132, 2010.
[2] R. Alterovitz, S. Patil, and A. Derbakova, 'Rapidly-exploring roadmaps:
weighing exploration vs. refinement in optimal motion planning,' Proc. of
IEEE International Conference on Robotics and Automation, Shanghai, China,
Vol. 20, pp. 3706-3712, 2011.
[3] J. S. Bay and H. Hemami, 'Modeling of a neural pattern generator with
coupled nonlinear oscillators,' IEEE Transactions on Biomedical Engineering,
Vol. 34, No. 4, pp. 297-306, 1987.
[4] L. Bokman, L. Jusuk, K. Joohyung, L. Minhyung, K. Hoseong, K. Sunggu, L.
Heekuk, K. Woong, and R. Kyungshik, 'Optimal gait primitives for dynamic
bipedal locomotion,' Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, California, pp. 4013-4018,
2012.
[5] P. P. Chakrabarti, S. Ghose, and S. C. DeSarkar, 'Admissibility of AO* When
Heuristics Overestimate,' Artificial Intelligence, Vol. 34, No. 1, pp. 97-113,
1987.
[6] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami, 'Planning biped
navigation strategies in complex environments,' Proceedings of IEEE
International Conference on Humanoid Robotics, Munich, Germany, Vol. 1,
pp. 400-410, 2003.
[7] J. Chestnutt and J. J. Kuffner, 'A tiered planning strategy for biped
navigation,' Proc. of IEEE/RAS International Conference on Humanoid
Robots, Los Angeles, United States, Vol. 1, pp. 422-436, 2004.
[8] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,
'Footstep planning for the Honda ASIMO humanoid,' Proc. of IEEE
International Conference on Robotics and Automation, Barcelona, Spain, Vol.
16, pp. 629-634, 2005.
[9] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, 'An adaptive action
model for legged navigation planning,' Proc. of IEEE-RAS International
Conference on Humanoid Robots, Pittsburgh, PA, USA, Vol. 29, pp. 196-202,
2007.
98
[10] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, 'Interactive control of
humanoid navigation,' Proc. of IEEE/RSJ International Conference on
Intelligent Robots and Systems, St. Louis, MO, USA, pp. 3519-3524, 2009.
[11] J. Chestnutt, Y. Takaoka, M. Doi, K. Suga, and S. Kagami, 'Safe adjustment
regions for legged locomotion paths,' Proc. of IEEE-RAS International
Conference on Humanoid Robots, Nashville, TN, USA, pp. 224-229, 2010.
[12] S.-Y. Chung and H. P. Huang, 'Robot motion planning in dynamic uncertain
environments,' Advanced Robotics, Vol. 25, pp. pp.849-870, 2011.
[13] L. Dachuan, L. Qing, C. Nong, and S. Jingyan, 'Extended RRT-based path
planning for flying robots in complex 3D environments with narrow
passages,' Proc. of IEEE International Conference on Automation Science and
Engineering, Seoul, Korea, Vol. 14, pp. 1173-1178, 2012.
[14] H. Durrant-Whyte, N. Roy, and P. Abbeel, 'Cross-entropy randomized motion
planning,' Robotics: Science and Systems VII, pp. 153 - 160, 2012.
[15] E. Glassman and R. Tedrake, 'A quadratic regulator-based heuristic for rapidly
exploring state space,' Proc. of IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, USA, pp. 5021-5028, 2010.
[16] K. Harada, K. Miura, M. Morisawa, K. Kaneko, S. Nakaoka, F. Kanehiro, T.
Tsuji, and S. Kajita, 'Toward human-like walking pattern generator,' Proc. of
IEEE/RSJ International Conference on Intelligent Robots and Systems, St.
Louis, MO, USA, Vol. 3, pp. 1071-1077, 2009.
[17] K. Harada, M. Morisawa, K. Miura, S. Nakaoka, K. Fujiwara, K. Kaneko, and
S. Kajita, 'Kinodynamic gait planning for full-body humanoid robots,' Proc.
of IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice,
France, Vol. 15, pp. 1544-1550, 2008.
[18] K. Hauser, T. Bretl, J.-C. Latombe, K. Harada, and B. Wilcox, 'Motion
planning for legged robots on varied terrain,' Robotics Research,2007.
[19] L. Hong, S. Qing, and Z. Tianwei, 'Hierarchical RRT for humanoid robot
footstep planning with multiple constraints in complex environments,' Proc.
of IEEE/RSJ International Conference on Intelligent Robots and Systems,
Vilamoura, Algarve, Portugal, Vol. 16, pp. 3187-3194, 2012.
[20] L. Hong, W. Weiwei, and Z. Hongbin, 'A dynamic subgoal path planner for
unpredictable environments,' Proc. of IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, USA, pp. 994-1001, 2010.
[21] A. Hornung and M. Bennewitz, 'Adaptive level-of-detail planning for efficient
humanoid navigation,' Proc. of IEEE International Conference on Robotics
and Automation, Anchorage, Alaska, USA, pp. 997-1002, 2012.
99
[22] F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, 'RRT-Smart: rapid
convergence implementation of RRT towards optimal solution,' Proc. of
International Conference on Mechatronics and Automation, Shanghai, China,
pp. 1651-1656, 2012.
[23] Y. Jae-Sang, K. Dong-Hyung, L. Sung-Jin, K. Sung-Pil, L. Ji Yeong, and H.
Chang-Soo, 'Development of manipulation planning algorithm for a dual-arm
robot assembly task,' Proc. of IEEE International Conference on Automation
Science and Engineering, Seoul, Korea, Vol. 28, pp. 1061-1066, 2012.
[24] L. Jaillet, J. Hoffman, J. van den Berg, P. Abbeel, J. M. Porta, and K. Goldberg,
'EG-RRT: Environment-guided random trees for kinodynamic motion
planning with uncertainty and obstacles,' Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA, USA, pp.
2646-2652, 2011.
[25] Y. Jiu-Lou and H. Han-Pang, 'A fast and smooth walking pattern generator of
biped robot using Jacobian inverse kinematics,' Proc. of IEEE Workshop on
Advanced Robotics and Its Social Impacts, Munich Germany pp. 1-6, 2007.
[26] L. Joon-Yong, K. Min-Soeng, and L. Ju-Jang, 'Multi-objective walking
trajectories generation for a biped robot,' Proc. of IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sendai, Japan, Vol. 4, pp.
3853-3858 vol.4, 2004.
[27] S. Junghun and O. Songhwai, 'A cost-aware path planning algorithm for
mobile robots,' Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura, Algarve, Portugal, pp. 4724-4729, 2012.
[28] S. Kagami, 'A fast dynamically equilibrated walking trajectory generation
method of humanoid robot,' Autonomous Robots, Vol. 12, pp. 71-82, 2002.
[29] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H.
Hirukawa, 'Biped walking pattern generation by using preview control of
zero-moment point,' Proc. of IEEE International Conference on Robotics and
Automation, Taipei, Taiwan, Vol. 2, pp. 1620-1626 vol.2, 2003.
[30] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa,
'A realtime pattern generator for biped walking,' Proc. of IEEE International
Conference on Robotics and Automation, Washington, DC, USA, Vol. 1, pp.
31-37 vol.1, 2002.
[31] S. Kajita, O. Matsumoto, and M. Saigo, 'Real-time 3D walking pattern
generation for a biped robot with telescopic legs,' Proc. of IEEE International
Conference on Robotics and Automation, Seoul, Korea, Vol. 3, pp. 2299-2306
vol.3, 2001.
100
[32] S. Kajita, M. Morisawa, K. Harada, K. Kaneko, F. Kanehiro, K. Fujiwara, and
H. Hirukawa, 'Biped walking pattern generator allowing auxiliary ZMP
control,' Proc. of International Conference on Intelligent Robots and Systems,
Beijing, China, pp. 2993-2999, 2006.
[33] S. Kajita and K. Tani, 'Experimental study of biped dynamic walking in the
linear inverted pendulum mode,' Proc. of IEEE International Conference on
Robotics and Automation, Nagoya, Aichi, Japan, Vol. 3, pp. 2885-2891 vol.3,
1995.
[34] S. Karaman and E. Frazzoli, 'Optimal kinodynamic motion planning using
incremental sampling-based methods,' Proc. of IEEE Conference on Decision
and Control, Atlanta, Georgia, USA, Vol. 49, pp. 7681-7687, 2010.
[35] M. Khadiv and S. A. A. Moosavian, 'A new approach in gait planning for
humanoid robots,' Proc. of International Conference on Robotics and
Mechatronics, Tehran, Iran., Vol. 28, pp. 171-177, 2013.
[36] P. X. L. M. La Hera, A. S. Shiriaev, L. B. Freidovich, U. Mettin, and S. V.
Gusev, 'Stable walking gaits for a three-link planar biped robot with one
actuator,' Vol. 29, No. 3, pp. 589-601, 2013.
[37] S. M. LaValle, J. J. K. I. B. R. Donald, K. M. Lynch, and D. Rus,
'Rapidly-exploring random trees: Progress and prospects,' Algorithmic and
Computational Robotics: New Directions, pp. pages 293--308, 2001.
[38] A. Liegeois, 'Automatic supervisory control of the configuration and behavior
of multibody mechanisms,' IEEE Transitions systems, Man, and Cybernetics,
Vol. 7,1997.
[39] H. Minakata and Y. Hori, 'Realtime speed-changeable biped walking by
controlling the parameter of virtual inverted pendulum,' Proc. of 20th
International Conference on Industrial Electronics, Control and
Instrumentation, Vol. 2, pp. 1009-1014 vol.2, 1994.
[40] K. Nagasaka, H. Inoue, and M. Inaba, 'Dynamic walking pattern generation
for a humanoid robot based on optimal gradient method,' Proc. of IEEE
International Conference on Systems, Man, and Cybernetics, Vol. 6, pp.
908-913 vol.6, 1999.
[41] Y. Nakamura and H. Hanafusa, 'Inverse kinematics solutions with singularity
robustness for robot manipulator control,' ASME Journal of Dynamic Systems,
Measurement and Control, Vol. 108, pp. 163-171, 1986.
[42] N. J. Nilsson, Principles of Artificial Intelligence San Francisco: Morgan
Kaufmann, 1980.
101
[43] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
'LQR-RRT*: Optimal sampling-based motion planning with automatically
derived extension heuristics,' Proc. of IEEE International Conference on
Robotics and Automation, St. Paul, Minnesota, USA, Vol. 29, pp. 2537-2542,
2012.
[44] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, 'Fast
humanoid robot collision-free footstep planning using swept volume
approximations,' IEEE Transactions on Robotics, Vol. 28, No. 2, pp. 427-439,
2012.
[45] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning, 2Ed,Massachusetts Institute of Technology, 2006.
[46] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3Ed,
New York, NY: Prentice Hall, 2009.
[47] T. Sato, S. Sakaino, E. Ohashi, and K. Ohnishi, 'Walking trajectory planning
on stairs using virtual slope for biped robots,' IEEE Transactions on Industrial
Electronics, Vol. 58, No. 4, pp. 1385-1396, 2011.
[48] S. Shimmyo, T. Sato, and K. Ohnishi, 'Biped walking pattern generation by
using preview control based on three-mass model,' IEEE Transactions on
Industrial Electronics,, Vol. 60, No. 11, pp. 5137-5147, 2013.
[49] R. Soo-Hyun, K. Yeonsik, K. Sin-Jung, L. Keonyong, Y. Bum-Jae, and N. L.
Doh, 'Humanoid path planning from HRI perspective: A scalable approach via
waypoints with a time index,' IEEE Transactions on Cybernetics, Vol. 43, No.
1, pp. 217-229, 2013.
[50] C. Tan Fung and R. V. Dubey, 'A weighted least-norm solution based scheme
for avoiding joint limits for redundant joint manipulators,' IEEE Transactions
on Robotics and Automation, Vol. 11, No. 2, pp. 286-292, 1995.
[51] L. W. Tsai, 'Position Analysis of Serial Manipulators,' in Robot Analysis: the
mechanics of serial and parallel manipulators 1999.
[52] C. Urmson and R. Simmons, 'Approaches for heuristically biasing RRT
growth,' Proc. of IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, Nevada, USA, Vol. 2, pp. 1178-1183 vol.2, 2003.
[53] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi, 'Development of a
bipedal humanoid robot having antagonistic driven joints and three DOF
trunk,' Proc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems, Leuven, Belgium, Vol. 1, pp. 96-101, 1998.
[54] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, 'Development of a bipedal
humanoid robot-control method of whole body cooperative dynamic biped
102
walking,' Proc. of IEEE International Conference on Robotics and
Automation, Detroit, Michigan, USA, Vol. 1, pp. 368-374, 1999.
[55] J. I. Yamaguchi, A. Takanishi, and I. Kato, 'Development of a biped walking
robot compensating for three-axis moment by trunk motion,' Proc. of
International Conference on Intelligent Robots and Systems,, Kyongju, Korea,
Vol. 1, pp. 561-566, 1993.
[56] K. Yeonsik, K. Hyunsoo, R. Soo-Hyun, D. Nakju Lett, O. Yonghwan, and Y.
Bum-Jae, 'Dependable humanoid navigation system based on bipedal
locomotion,' IEEE Transactions onIndustrial Electronics, Vol. 59, No. 2, pp.
1050-1060, 2012.
[57] E. Yoshida, 'Humanoid motion planning using multi-level DOF exploitation
based on randomized method,' Proc. of IEEE/RSJ International Conference
on Intelligent Robots and Systems, Edmonton, Alberta, Canada, pp. 3378-3383,
2005.
[58] X. Zeyang, C. Guodong, X. Jing, Z. Qunfei, and K. Chen, 'A random
sampling-based approach to goal-directed footstep planning for humanoid
robots,' Proc. of IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, Singapore, Vol. 29, pp. 168-173, 2009.
[59] X. Zeyang, C. Guodong, X. Jing, Z. Qunfei, and K. Chen, 'A random
sampling-based approach to goal-directed footstep planning for humanoid
robots,' Proc. of IEEE/ASME International Conference on Advanced
Intelligent Mechatronics, pp. 168-173, 2009.
[60] X. Zeyang, X. Jing, and K. Chen, 'Global navigation for humanoid robots
using sampling-based footstep planners,' IEEE/ASME Transactions on
Mechatronics, Vol. 16, No. 4, pp. 716-723, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60762-
dc.description.abstractThe main research of this thesis is to generate a footstep trajectory rapidly for a humanoid robot in the environment. Being different from a mobile robot, a humanoid robot has the ability to step on and down or step across motion to overcome obstacles. We use the algorithm that is developed in this thesis and the database to achieve the goal of trajectory generation.
The algorithm that is proposed in this thesis is based on the basic RRT (Rapid Random Tree) algorithm. By adding the footstep transition models, the Multi-RRT algorithm is used to generate a footstep path of the humanoid robot. However, there are a lot of moving obstacles in the human living life. The dynamic Multi-RRT algorithm is the method to avoid moving obstacles by modifying the original path that is generated by the Multi-RRT algorithm. In addition, some information of the environment affects the stability of the robot. For example, the quality of commands transmission is influenced by the strength of the wireless signal. Even though, we cannot measure all the measurement in the map, we use the way to predict the values. Finally, we propose the DDAO Multi-RRT algorithm by considering the cost map that is modeled by a Gaussian Process.
With the information of the map and the time-varying footstep trajectory, the humanoid robot can reach the goal by automatically changing the path. In this way, the humanoid robot can blend into our daily life.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:29:07Z (GMT). No. of bitstreams: 1
ntu-102-R99522842-1.pdf: 6747741 bytes, checksum: cfce59c691323785c555028e6a6ad520 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 .................................................................................................................................. i
Abstract............................................................................................................................ ii
Lists of Tables................................................................................................................... v
Lists of Figures ................................................................................................................ vi
Chapter 1 Introduction .............................................................................................. 1
1.1 Motivation ................................................................................................ 1
1.2 Related Works........................................................................................... 2
1.2.1 Stable Pattern Generation ................................................................. 2
1.2.2 Searching Strategy for a Humanoid Robot....................................... 4
1.3 Thesis Organization.................................................................................. 6
1.4 Contributions ............................................................................................ 8
Chapter 2 Kinematics and Dynamics ...................................................................... 10
2.1 Introduction ............................................................................................ 10
2.2 Kinematics Analysis of Serial Manipulators ...........................................11
2.2.1 Forward Kinematics ........................................................................11
2.2.2 Inverse Kinematics ......................................................................... 13
2.3 Zero Moment Point and Cart – Table Model.......................................... 18
2.4 Summary................................................................................................. 21
Chapter 3 Navigation Planning for the Humanoid Robot ....................................... 23
3.1 Introduction ............................................................................................ 23
3.2 Hierarchical Searching Strategy ............................................................. 24
3.2.1 Rapid Random Tree Searching ....................................................... 25
3.2.2 Footstep Transition Models ............................................................ 28
3.2.3 Multi-RRT Algorithm ..................................................................... 31
3.2.4 Adjustment of ZMP........................................................................ 37
3.2.5 On-line COG Arrangement............................................................. 42
3.3 Summary................................................................................................. 46
Chapter 4 On-line Dynamic Footstep Planning ...................................................... 48
4.1 Introduction ............................................................................................ 48
4.2 Environment Analysis ............................................................................ 49
4.2.1 AND/OR Graphs ............................................................................ 49
4.2.2 Cost Map Modeled by a Gaussian Process..................................... 54
4.3 Modification of Multi-RRT .................................................................... 61
4.3.1 Dynamic Multi-RRT Footstep Planning......................................... 61
4.3.2 DDAO Multi-RRT Footstep Planning............................................ 68
iv
4.4 Summary................................................................................................. 77
Chapter 5 Simulations and Experiments ................................................................. 78
5.1 Introduction ............................................................................................ 78
5.2 Software Platform and Hardware Platform............................................ 78
5.3 Simulation Results.................................................................................. 79
5.3.1 Multi- RRT Algorithm in a Room .................................................. 81
5.3.2 DDAO Multi-RRT Algorithm with Two Moving Obstacles .......... 82
5.4 Experimental Results.............................................................................. 86
5.4.1 Three-Dimensional Walking and Multi-RRT Algorithm................ 87
5.4.2 The experiment of the DDAO Multi-RRT ..................................... 90
Chapter 6 Conclusions and Future Works............................................................... 93
6.1 Conclusions ............................................................................................ 93
6.2 Future Works .......................................................................................... 95
References ...................................................................................................................... 97
dc.language.isoen
dc.subject高斯過程zh_TW
dc.subject人形機器人zh_TW
dc.subjectRRT演算法zh_TW
dc.subject暫態步伐模型zh_TW
dc.subject動態步態軌跡zh_TW
dc.subjectRRT Algorithmen
dc.subjectHumanoid Roboten
dc.subjectGaussian Processen
dc.subjectDynamic Footstep trajectoryen
dc.subjectFootstep Transition Modelen
dc.subjectZMPen
dc.title人形機器人避障步態軌跡規劃zh_TW
dc.titleFootstep Planning for Humanoid Robots with Obstacle Avoidanceen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林沛群(Pei-Chun Lin),蔡清元(Tsing-Iuan Tsay)
dc.subject.keyword人形機器人,RRT演算法,暫態步伐模型,動態步態軌跡,高斯過程,zh_TW
dc.subject.keywordHumanoid Robot,RRT Algorithm,ZMP,Footstep Transition Model,Dynamic Footstep trajectory,Gaussian Process,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved