Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60729
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴文崧
dc.contributor.authorJu-Chun Peien
dc.contributor.author裴如淳zh_TW
dc.date.accessioned2021-06-16T10:27:45Z-
dc.date.available2018-08-20
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citationChapter 1
Abe, Y., Namba, H., Zheng, Y., & Nawa, H. (2009). In situ hybridization reveals developmental regulation of ErbB1-4 mRNA expression in mouse midbrain: Implication of ErbB receptors for dopaminergic neurons. Neuroscience, 161, 95-110. doi: 10.1016/j.neuroscience.2009.03.022
Abi-Dargham, A. (2004). Do we still believe in the dopamine hypothesis? New data bring new evidence. International Journal of Neuropsychopharmacology, 7 Suppl 1, S1-5. doi: 10.1017/S1461145704004110
Aleman, A., Kahn, R. S., & Selten, J. P. (2003). Sex differences in the risk of schizophrenia: Evidence from meta-analysis. Archives of General Psychiatry, 60, 565-571. doi: 10.1001/archpsyc.60.6.565
Arguello, P. A., & Gogos, J. A. (2006). Modeling madness in mice: One piece at a time. Neuron, 52, 179-196. doi: DOI 10.1016/j.neuron.2006.09.023
Bakker, S. C., Hoogendoorn, M. L., Selten, J. P., Verduijn, W., Pearson, P. L., Sinke, R. J., & Kahn, R. S. (2004). Neuregulin 1: Genetic support for schizophrenia subtypes. Molecular Psychiatry, 9, 1061-1063. doi: 10.1038/sj.mp.4001564
Bao, J., Wolpowitz, D., Role, L. W., & Talmage, D. A. (2003). Back signaling by the Nrg-1 intracellular domain. Journal of Cell Biology, 161, 1133-1141. doi: 10.1083/jcb.200212085
Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321-353. doi: 10.1146/annurev.clinpsy.1.102803.143959
Benes, F. M., & Berretta, S. (2001). GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology, 25, 1-27. doi: 10.1016/S0893-133X(01)00225-1
Benes, F. M., Khan, Y., Vincent, S. L., & Wickramasinghe, R. (1996). Differences in the subregional and cellular distribution of GABAA receptor binding in the hippocampal formation of schizophrenic brain. Synapse, 22, 338-349. doi: 10.1002/(SICI)1098-2396(199604)22:4<338::AID-SYN5>3.0.CO;2-C
Bertram, I., Bernstein, H. G., Lendeckel, U., Bukowska, A., Dobrowolny, H., Keilhoff, G., . . . Bogerts, B. (2007). Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Annals of the New York Academy of Sciences, 1096, 147-156. doi: 10.1196/annals.1397.080
Blum, B. P., & Mann, J. J. (2002). The GABAergic system in schizophrenia. International Journal of Neuropsychopharmacology, 5, 159-179. doi: doi:10.1017/S1461145702002894
Boos, H. B., Aleman, A., Cahn, W., Hulshoff Pol, H., & Kahn, R. S. (2007). Brain volumes in relatives of patients with schizophrenia: A meta-analysis. Archives of General Psychiatry, 64, 297-304. doi: 10.1001/archpsyc.64.3.297
Bouton, ME, & Bolles, RC. (1980). Conditioned fear assessed by freezing and by the suppression of three different baselines. Animal Learning & Behavior, 8, 429-434.
Breier, A., Malhotra, A. K., Pinals, D. A., Weisenfeld, N. I., & Pickar, D. (1997). Association of ketamine-induced psychosis with focal activation of the prefrontal cortex in healthy volunteers. American Journal of Psychiatry, 154, 805-811.
Brown, A. S. (2011). The environment and susceptibility to schizophrenia. Progress in Neurobiology, 93, 23-58. doi: 10.1016/j.pneurobio.2010.09.003
Chen, Y. C., Chen, Y. W., Hsu, Y. F., Chang, W. T., Hsiao, C. K., Min, M. Y., & Lai, W. S. (2012). Akt1 deficiency modulates reward learning and reward prediction error in mice. Genes, Brain and Behavior, 11, 157-169. doi: 10.1111/j.1601-183X.2011.00759.x
Chen, Y. C., & Lai, W. S. (2010). Behavioural phenotyping of dopamine transporter knockdown mice using local small interference RNA. Behavioural Brain Research, 214, 475-479. doi: 10.1016/j.bbr.2010.06.008
Chen, Y. W., & Lai, W. S. (2011). Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience, 174, 178-189. doi: 10.1016/j.neuroscience.2010.09.056
Chong, V. Z., Thompson, M., Beltaifa, S., Webster, M. J., Law, A. J., & Weickert, C. S. (2008). Elevated neuregulin-1 and ErbB4 protein in the prefrontal cortex of schizophrenic patients. Schizophrenia Research, 100, 270-280. doi: 10.1016/j.schres.2007.12.474
Clinton, S. M., & Meador-Woodruff, J. H. (2004). Abnormalities of the NMDA receptor and associated intracellular molecules in the thalamus in schizophrenia and bipolar disorder. Neuropsychopharmacology, 29, 1353-1362. doi: 10.1038/sj.npp.1300451
Corfas, G., Rosen, K. M., Aratake, H., Krauss, R., & Fischbach, G. D. (1995). Differential expression of ARIA isoforms in the rat brain. Neuron, 14, 103-115.
Corvin, A. P., Morris, D. W., McGhee, K., Schwaiger, S., Scully, P., Quinn, J., . . . Gill, M. (2004). Confirmation and refinement of an 'at-risk' haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Molecular Psychiatry, 9, 208-213. doi: 10.1038/sj.mp.4001412
Crawley, J. N. (1999). Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Research, 835, 18-26.
Curley, A. A., Arion, D., Volk, D. W., Asafu-Adjei, J. K., Sampson, A. R., Fish, K. N., & Lewis, D. A. (2011). Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: Clinical, protein, and cell type-specific features. American Journal of Psychiatry, 168, 921-929. doi: 10.1176/appi.ajp.2011.11010052
D'Hooge, R., & De Deyn, P. P. (2001). Applications of the Morris water maze in the study of learning and memory. Brain Research: Brain Research Reviews, 36, 60-90.
Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. American Journal of Psychiatry, 148, 1474-1486.
Dean, B. (2000). Signal transmission, rather than reception, is the underlying neurochemical abnormality in schizophrenia. Australian and New Zealand Journal of Psychiatry, 34, 560-569.
Dejaegere, T., Serneels, L., Schafer, M. K., Van Biervliet, J., Horre, K., Depboylu, C., . . . De Strooper, B. (2008). Deficiency of Aph1B/C-gamma-secretase disturbs Nrg1 cleavage and sensorimotor gating that can be reversed with antipsychotic treatment. Proceedings of the National Academy of Sciences of the United States of America, 105, 9775-9780. doi: 10.1073/pnas.0800507105
Dere, E., Huston, J. P., & De Souza Silva, M. A. (2007). The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neuroscience & Biobehavioral Reviews, 31, 673-704. doi: 10.1016/j.neubiorev.2007.01.005
Di Cristo, G. (2007). Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clinical Genetics, 72, 1-8. doi: 10.1111/j.1399-0004.2007.00822.x
Di Forti, M., Lappin, J. M., & Murray, R. M. (2007). Risk factors for schizophrenia--all roads lead to dopamine. European Neuropsychopharmacology, 17 Suppl 2, S101-107. doi: 10.1016/j.euroneuro.2007.02.005
Falls, D. L. (2003). Neuregulins: Functions, forms, and signaling strategies. Experimental Cell Research, 284, 14-30.
Fanselow, MS. (1984). What is conditioned fear. Trends in Neurosciences, 7, 460-462.
File, S. E., & Wardill, A. G. (1975). Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia, 44, 53-59.
Fukui, N., Muratake, T., Kaneko, N., Amagane, H., & Someya, T. (2006). Supportive evidence for neuregulin 1 as a susceptibility gene for schizophrenia in a Japanese population. Neuroscience Letters, 396, 117-120. doi: 10.1016/j.neulet.2005.11.015
Gardner, M., Gonzalez-Neira, A., Lao, O., Calafell, F., Bertranpetit, J., & Comas, D. (2006). Extreme population differences across Neuregulin 1 gene, with implications for association studies. Molecular Psychiatry, 11, 66-75. doi: 10.1038/sj.mp.4001749
Geyer, M. A., & Braff, D. L. (1987). Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophrenia Bulletin, 13, 643-668.
Gonzalez-Burgos, G., & Lewis, D. A. (2008). GABA neurons and the mechanisms of network oscillations: Implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34, 944-961. doi: 10.1093/schbul/sbn070
Green, M. F. (2006). Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. Journal of Clinical Psychiatry, 67, e12.
Green, M. F., Kern, R. S., & Heaton, R. K. (2004). Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophrenia Research, 72, 41-51. doi: 10.1016/j.schres.2004.09.009
Green, M. F., Nuechterlein, K. H., Gold, J. M., Barch, D. M., Cohen, J., Essock, S., . . . Marder, S. R. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56, 301-307. doi: 10.1016/j.biopsych.2004.06.023
Grigoriadis, S., & Seeman, M. V. (2002). The role of estrogen in schizophrenia: Implications for schizophrenia practice guidelines for women. Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, 47, 437-442.
Gur, R. E., Mozley, P. D., Resnick, S. M., Mozley, L. H., Shtasel, D. L., Gallacher, F., . . . Gur, R. C. (1995). Resting cerebral glucose metabolism in first-episode and previously treated patients with schizophrenia relates to clinical features. Archives of General Psychiatry, 52, 657-667.
Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., . . . Arnold, S. E. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12, 824-828. doi: 10.1038/nm1418
Hall, D., Gogos, J. A., & Karayiorgou, M. (2004). The contribution of three strong candidate schizophrenia susceptibility genes in demographically distinct populations. Genes, Brain and Behavior, 3, 240-248. doi: 10.1111/j.1601-183X.2004.00078.x
Hall, J., Whalley, H. C., Job, D. E., Baig, B. J., McIntosh, A. M., Evans, K. L., . . . Lawrie, S. M. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nature Neuroscience, 9, 1477-1478. doi: 10.1038/nn1795
Harrison, P. J. (2004). The hippocampus in schizophrenia: A review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology, 174, 151-162. doi: 10.1007/s00213-003-1761-y
Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 132-140. doi: 10.1016/j.biopsych.2005.11.002
Hashimoto, R., Straub, R. E., Weickert, C. S., Hyde, T. M., Kleinman, J. E., & Weinberger, D. R. (2004). Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, 9, 299-307. doi: 10.1038/sj.mp.4001434
Heckers, S., Rauch, S. L., Goff, D., Savage, C. R., Schacter, D. L., Fischman, A. J., & Alpert, N. M. (1998). Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience, 1, 318-323. doi: 10.1038/1137
Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27, 11496-11500. doi: 10.1523/JNEUROSCI.2213-07.2007
Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III--the final common pathway. Schizophrenia Bulletin, 35, 549-562. doi: 10.1093/schbul/sbp006
Iwakura, Y., & Nawa, H. (2013). ErbB1-4-dependent EGF/neuregulin signals and their cross talk in the central nervous system: pathological implications in schizophrenia and Parkinson's disease. Frontiers in Cellular Neuroscience, 7, 4. doi: 10.3389/fncel.2013.00004
Jaaro-Peled, H., Ayhan, Y., Pletnikov, M. V., & Sawa, A. (2010). Review of pathological hallmarks of schizophrenia: Comparison of genetic models with patients and nongenetic models. Schizophrenia Bulletin, 36, 301-313. doi: 10.1093/schbul/sbp133
Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., & Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: Understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends in Neurosciences, 32, 485-495. doi: 10.1016/j.tins.2009.05.007
Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20, 201-225. doi: 10.1016/S0893-133X(98)00060-8
Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160, 13-23.
Kato, T., Abe, Y., Sotoyama, H., Kakita, A., Kominami, R., Hirokawa, S., . . . Nawa, H. (2011). Transient exposure of neonatal mice to neuregulin-1 results in hyperdopaminergic states in adulthood: Implication in neurodevelopmental hypothesis for schizophrenia. Molecular Psychiatry, 16, 307-320. doi: 10.1038/mp.2010.10
Kellendonk, C., Simpson, E. H., & Kandel, E. R. (2009). Modeling cognitive endophenotypes of schizophrenia in mice. Trends in Neurosciences, 32, 347-358. doi: 10.1016/j.tins.2009.02.003
Kim, J. W., Lee, Y. S., Cho, E. Y., Jang, Y. L., Park, D. Y., Choi, K. S., . . . Hong, K. S. (2006). Linkage and association of schizophrenia with genetic variations in the locus of neuregulin 1 in Korean population. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 281-286. doi: 10.1002/ajmg.b.30209
Kliethermes, C. L., & Crabbe, J. C. (2006). Pharmacological and genetic influences on hole-board behaviors in mice. Pharmacology Biochemistry and Behavior, 85, 57-65. doi: 10.1016/j.pbb.2006.07.007
Krug, A., Markov, V., Krach, S., Jansen, A., Zerres, K., Eggermann, T., . . . Kircher, T. (2010). The effect of Neuregulin 1 on neural correlates of episodic memory encoding and retrieval. NeuroImage, 53, 985-991. doi: 10.1016/j.neuroimage.2009.12.062
Krystal, J. H., Abi-Saab, W., Perry, E., D'Souza, D. C., Liu, N., Gueorguieva, R., . . . Breier, A. (2005). Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology, 179, 303-309. doi: 10.1007/s00213-004-1982-8
Kulkarni, J., de Castella, A., Fitzgerald, P. B., Gurvich, C. T., Bailey, M., Bartholomeusz, C., & Burger, H. (2008). Estrogen in severe mental illness: A potential new treatment approach. Archives of General Psychiatry, 65, 955-960. doi: 10.1001/archpsyc.65.8.955
Kulkarni, J., de Castella, A., Headey, B., Marston, N., Sinclair, K., Lee, S., . . . Burger, H. (2011). Estrogens and men with schizophrenia:Is there a case for adjunctive therapy? Schizophrenia Research, 125, 278-283. doi: 10.1016/j.schres.2010.10.009
Kulkarni, J., Hayes, E., & Gavrilidis, E. (2012). Hormones and schizophrenia. Current Opinion in Psychiatry, 25, 89-95. doi: 10.1097/YCO.0b013e328350360e
Kwon, O. B., Paredes, D., Gonzalez, C. M., Neddens, J., Hernandez, L., Vullhorst, D., & Buonanno, A. (2008). Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors. Proceedings of the National Academy of Sciences of the United States of America, 105, 15587-15592. doi: 10.1073/pnas.0805722105
Lachman, H. M., Pedrosa, E., Nolan, K. A., Glass, M., Ye, K., & Saito, T. (2006). Analysis of polymorphisms in AT-rich domains of neuregulin 1 gene in schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 102-109. doi: 10.1002/ajmg.b.30242
Laruelle, M., Abi-Dargham, A., van Dyck, C. H., Gil, R., D'Souza, C. D., Erdos, J., . . . Innis, R. B. (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Sciences of the United States of America, 93, 9235-9240.
Law, A. J., Lipska, B. K., Weickert, C. S., Hyde, T. M., Straub, R. E., Hashimoto, R., . . . Weinberger, D. R. (2006). Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 6747-6752. doi: 10.1073/pnas.0602002103
Law, A. J., Shannon Weickert, C., Hyde, T. M., Kleinman, J. E., & Harrison, P. J. (2004). Neuregulin-1 (NRG-1) mRNA and protein in the adult human brain. Neuroscience, 127, 125-136. doi: 10.1016/j.neuroscience.2004.04.026
Leung, A., & Chue, P. (2000). Sex differences in schizophrenia, a review of the literature. Acta Psychiatrica Scandinavica. Supplementum, 401, 3-38.
Li, B., Woo, R. S., Mei, L., & Malinow, R. (2007). The neuregulin-1 receptor erbB4 controls glutamatergic synapse maturation and plasticity. Neuron, 54, 583-597. doi: 10.1016/j.neuron.2007.03.028
Li, T., Stefansson, H., Gudfinnsson, E., Cai, G., Liu, X., Murray, R. M., . . . Collier, D. A. (2004). Identification of a novel neuregulin 1 at-risk haplotype in Han schizophrenia Chinese patients, but no association with the Icelandic/Scottish risk haplotype. Molecular Psychiatry, 9, 698-704. doi: 10.1038/sj.mp.4001485
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., . . . Clinical Antipsychotic Trials of Intervention Effectiveness, Investigators. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New England Journal of Medicine, 353, 1209-1223. doi: 10.1056/NEJMoa051688
Lisman, J. E. (1999). Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22, 233-242.
Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 31, 234-242. doi: 10.1016/j.tins.2008.02.005
Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science, 267, 1512-1515.
Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology, 92, 180-185.
Liu, C. M., Hwu, H. G., Fann, C. S., Lin, C. Y., Liu, Y. L., Ou-Yang, W. C., & Lee, S. F. (2005). Linkage evidence of schizophrenia to loci near neuregulin 1 gene on chromosome 8p21 in Taiwanese families. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 134B, 79-83. doi: 10.1002/ajmg.b.20161
Liu, P., Cleveland, T. E. th, Bouyain, S., Byrne, P. O., Longo, P. A., & Leahy, D. J. (2012). A single ligand is sufficient to activate EGFR dimers. Proceedings of the National Academy of Sciences of the United States of America, 109, 10861-10866. doi: 10.1073/pnas.1201114109
Liu, X., Hwang, H., Cao, L., Buckland, M., Cunningham, A., Chen, J., . . . Zhou, M. (1998). Domain-specific gene disruption reveals critical regulation of neuregulin signaling by its cytoplasmic tail. Proceedings of the National Academy of Sciences of the United States of America, 95, 13024-13029.
Liu, X., Hwang, H., Cao, L., Wen, D., Liu, N., Graham, R. M., & Zhou, M. (1998). Release of the neuregulin functional polypeptide requires its cytoplasmic tail. Journal of Biological Chemistry, 273, 34335-34340.
Maccaferri, G., & Dingledine, R. (2002). Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. Journal of Neuroscience, 22, 5462-5472. doi: 20026566
McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: A concise overview of incidence, prevalence, and mortality. Epidemiologic Reviews, 30, 67-76. doi: 10.1093/epirev/mxn001
Mei, L., & Xiong, W. C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Reviews: Neuroscience, 9, 437-452. doi: 10.1038/nrn2392
Misslin, R., & Ropartz, P. (1981). Responses in mice to a novel object. Behaviour, 78, 169-177. doi: 10.1163/156853981x00301
Miyamoto, S., Miyake, N., Jarskog, L. F., Fleischhacker, W. W., & Lieberman, J. A. (2012). Pharmacological treatment of schizophrenia: A critical review of the pharmacology and clinical effects of current and future therapeutic agents. Molecular Psychiatry, 17, 1206-1227. doi: 10.1038/mp.2012.47
Moghaddam, B. (2003). Bringing order to the glutamate chaos in schizophrenia. Neuron, 40, 881-884.
Moghaddam, B., & Adams, B. W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281, 1349-1352.
Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37, 4-15. doi: 10.1038/npp.2011.181
Morris, R. (1984). Developments of a water-maze procedure for studying spatial-learning in the rat. Journal of Neuroscience Methods, 11, 47-60. doi: Doi 10.1016/0165-0270(84)90007-4
Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239-260. doi: Doi 10.1016/0023-9690(81)90020-5
Mulle, J. G. (2012). Schizophrenia genetics: Progress, at last. Current Opinion in Genetics & Development, 22, 238-244. doi: 10.1016/j.gde.2012.02.011
Murray, R. M., Lappin, J., & Di Forti, M. (2008). Schizophrenia: From developmental deviance to dopamine dysregulation. European Neuropsychopharmacology, 18 Suppl 3, S129-134. doi: 10.1016/j.euroneuro.2008.04.002
Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., & Belforte, J. E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology, 62, 1574-1583. doi: 10.1016/j.neuropharm.2011.01.022
Neddens, J., & Buonanno, A. (2010). Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus, 20, 724-744. doi: 10.1002/hipo.20675
Nestler, E. J., Gould, E., Manji, H., Buncan, M., Duman, R. S., Greshenfeld, H. K., . . . Zalcman, S. (2002). Preclinical models: Status of basic research in depression. Biological Psychiatry, 52, 503-528.
Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13, 1161-1169. doi: 10.1038/nn.2647
Nicodemus, K. K., Law, A. J., Luna, A., Vakkalanka, R., Straub, R. E., Kleinman, J. E., & Weinberger, D. R. (2009). A 5' promoter region SNP in NRG1 is associated with schizophrenia risk and type III isoform expression. Molecular Psychiatry, 14, 741-743. doi: 10.1038/mp.2008.150
Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72, 29-39. doi: 10.1016/j.schres.2004.09.007
Olney, J. W., Newcomer, J. W., & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33, 523-533.
Parlapani, E., Schmitt, A., Wirths, O., Bauer, M., Sommer, C., Rueb, U., . . . Falkai, P. (2008). Gene expression of neuregulin-1 isoforms in different brain regions of elderly schizophrenia patients. World Journal of Biological Psychiatry, 11, 243-250. doi: 10.3109/15622970802022376
Perlman, W. R., Tomaskovic-Crook, E., Montague, D. M., Webster, M. J., Rubinow, D. R., Kleinman, J. E., & Weickert, C. S. (2005). Alteration in estrogen receptor alpha mRNA levels in frontal cortex and hippocampus of patients with major mental illness. Biological Psychiatry, 58, 812-824. doi: 10.1016/j.biopsych.2005.04.047
Petryshen, T. L., Middleton, F. A., Kirby, A., Aldinger, K. A., Purcell, S., Tahl, A. R., . . . Sklar, P. (2005). Support for involvement of neuregulin 1 in schizophrenia pathophysiology. Molecular Psychiatry, 10, 366-374, 328. doi: 10.1038/sj.mp.4001608
Pierce, R. C., & Kalivas, P. W. (2007). Locomotor behavior. Current Protocols in Neuroscience, 8, 1-9. doi: 10.1002/0471142301.ns0801s40
Pinkham, A. E., Penn, D. L., Perkins, D. O., & Lieberman, J. (2003). Implications for the neural basis of social cognition for the study of schizophrenia. American Journal of Psychiatry, 160, 815-824.
Powell, C. M., & Miyakawa, T. (2006). Schizophrenia-relevant behavioral testing in rodent models: A uniquely human disorder? Biological Psychiatry, 59, 1198-1207. doi: 10.1016/j.biopsych.2006.05.008
Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, 463, 3-33.
Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M., & Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52, 139-153. doi: 10.1016/j.neuron.2006.09.015
Sankoorikal, G. M., Kaercher, K. A., Boon, C. J., Lee, J. K., & Brodkin, E. S. (2006). A mouse model system for genetic analysis of sociability: C57BL/6J versus BALB/cJ inbred mouse strains. Biological Psychiatry, 59, 415-423. doi: 10.1016/j.biopsych.2005.07.026
Schmitt, A., Parlapani, E., Gruber, O., Wobrock, T., & Falkai, P. (2008). Impact of neuregulin-1 on the pathophysiology of schizophrenia in human post-mortem studies. European Archives of Psychiatry and Clinical Neuroscience, 258 Suppl 5, 35-39. doi: 10.1007/s00406-008-5019-x
Schwab, S. G., & Wildenauer, D. B. (2009). Update on key previously proposed candidate genes for schizophrenia. Current Opinion in Psychiatry, 22, 147-153. doi: 10.1097/YCO.0b013e328325a598
Seeman, P. (1987). Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse, 1, 133-152. doi: 10.1002/syn.890010203
Seeman, P., Schwarz, J., Chen, J. F., Szechtman, H., Perreault, M., McKnight, G. S., . . . Sumiyoshi, T. (2006). Psychosis pathways converge via D2high dopamine receptors. Synapse, 60, 319-346. doi: 10.1002/syn.20303
Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., & Navon, R. (2006). The involvement of ErbB4 with schizophrenia: Association and expression studies. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 141B, 142-148. doi: 10.1002/ajmg.b.30275
Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., . . . Frackowiak, R. S. J. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176-179. doi: 10.1038/378176a0
Stefanis, N. C., Hatzimanolis, A., Smyrnis, N., Avramopoulos, D., Evdokimidis, I., van Os, J., . . . Weinberger, D. R. (2013). Schizophrenia candidate gene ERBB4: Covert routes of vulnerability to psychosis detected at the population level. Schizophrenia Bulletin, 39, 349-357. doi: 10.1093/schbul/sbr169
Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., . . . St Clair, D. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83-87. doi: S0002-9297(07)60506-0 [pii]
Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., . . . Stefansson, K. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877-892. doi: 10.1086/342734
Steinthorsdottir, V., Stefansson, H., Ghosh, S., Birgisdottir, B., Bjornsdottir, S., Fasquel, A. C., . . . Gulcher, J. R. (2004). Multiple novel transcription initiation sites for NRG1. Gene, 342, 97-105. doi: 10.1016/j.gene.2004.07.029
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60, 1187-1192. doi: 10.1001/archpsyc.60.12.1187
Svrakic, D. M., Zorumski, C. F., Svrakic, N. M., Zwir, I., & Cloninger, C. R. (2013). Risk architecture of schizophrenia: The role of epigenetics. Current Opinion in Psychiatry, 26, 188-195. doi: 10.1097/YCO.0b013e32835d8329
Takao, K., & Miyakawa, T. (2006). Investigating gene-to-behavior pathways in psychiatric disorders: The use of a comprehensive behavioral test battery on genetically engineered mice. Annals of the New York Academy of Sciences, 1086, 144-159. doi: 10.1196/annals.1377.008
Tamminga, C. A., & Holcomb, H. H. (2005). Phenotype of schizophrenia: A review and formulation. Molecular Psychiatry, 10, 27-39. doi: 10.1038/sj.mp.4001563
van den Buuse, M. (2010). Modeling the positive symptoms of schizophrenia in genetically modified mice: pharmacology and methodology aspects. Schizophrenia Bulletin, 36, 246-270. doi: 10.1093/schbul/sbp132
van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468, 203-212. doi: 10.1038/nature09563
Vullhorst, D., Neddens, J., Karavanova, I., Tricoire, L., Petralia, R. S., McBain, C. J., & Buonanno, A. (2009). Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. Journal of Neuroscience, 29, 12255-12264. doi: 10.1523/JNEUROSCI.2454-09.2009
Waddington, J. L., Corvin, A. P., Donohoe, G., O'Tuathaigh, C. M., Mitchell, K. J., & Gill, M. (2007). Functional genomics and schizophrenia: endophenotypes and mutant models. Psychiatric Clinics of North America, 30, 365-399. doi: 10.1016/j.psc.2007.04.011
Walker, R. M., Christoforou, A., Thomson, P. A., McGhee, K. A., Maclean, A., Muhleisen, T. W., . . . Evans, K. L. (2010). Association analysis of Neuregulin 1 candidate regions in schizophrenia and bipolar disorder. Neuroscience Letters, 478, 9-13. doi: 10.1016/j.neulet.2010.04.056
Walsh, R. N., & Cummins, R. A. (1976). Open-field test - critical-review. Psychological Bulletin, 83, 482-504. doi: 10.1037//0033-2909.83.3.482
Walss-Bass, C., Liu, W., Lew, D. F., Villegas, R., Montero, P., Dassori, A., . . . Raventos, H. (2006). A novel missense mutation in the transmembrane domain of neuregulin 1 is associated with schizophrenia. Biological Psychiatry, 60, 548-553. doi: 10.1016/j.biopsych.2006.03.017
Wang, J. Y., Frenzel, K. E., Wen, D., & Falls, D. L. (1998). Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition. Journal of Biological Chemistry, 273, 20525-20534.
Wang, X. D., Su, Y. A., Guo, C. M., Yang, Y., & Si, T. M. (2008). Chronic antipsychotic drug administration alters the expression of neuregulin 1beta, ErbB2, ErbB3, and ErbB4 in the rat prefrontal cortex and hippocampus. International Journal of Neuropsychopharmacology, 11, 553-561. doi: 10.1017/S1461145707008371
Weickert, C. S., Miranda-Angulo, A. L., Wong, J., Perlman, W. R., Ward, S. E., Radhakrishna, V., . . . Kleinman, J. E. (2008). Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Human Molecular Genetics, 17, 2293-2309. doi: 10.1093/hmg/ddn130
Witter, M. P., Wouterlood, F. G., Naber, P. A., & Van Haeften, T. (2000). Anatomical organization of the parahippocampal-hippocampal network. Annals of the New York Academy of Sciences, 911, 1-24.
Wolkowitz, O. M., & Pickar, D. (1991). Benzodiazepines in the treatment of schizophrenia: A review and reappraisal. American Journal of Psychiatry, 148, 714-726.
Yau, H. J., Wang, H. F., Lai, C., & Liu, F. C. (2003). Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: Preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cerebral Cortex, 13, 252-264.
Young, J. W., Powell, S. B., Risbrough, V., Marston, H. M., & Geyer, M. A. (2009). Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacology & Therapeutics, 122, 150-20
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60729-
dc.description.abstract精神分裂症為一盛行率達 1%、造成認知缺損且遺傳性高之心理疾病。苦於致病機轉不明,在治療病人認知缺損症狀上始終效果不佳。故本研究主題為精神分裂症相關基因neuregulin 1(Nrg1)之致病機轉。多項研究指出Nrg1與海馬迴神經可塑性有關,其可能為導致精神分裂症病人認知缺損之病因。本研究利用Nrg1缺損小鼠,欲透過觀察認知行為表現,配合藥物操弄、神經型態研究、神經傳導物質表現量等多取向的實驗設計,來深入探討精神分裂症的認知缺損機轉。實驗一,欲分析基因對於不同性別之多項行為表現影響,著重於觀察此基因對於與學習記憶之影響。實驗發現Nrg1缺損會造成認知作業缺損,特別是在公鼠身上。而,兩個月和六個月大的Nrg1缺損小鼠在基礎行為測試表現正常,此可排除導致認知能力不佳之混淆變項。實驗二測試較易受到影響之神經傳導系統,觀察施打藥物後引發之行為反應。結果顯示Nrg1缺損公鼠之GABA神經傳導系統較脆弱。實驗三進一步觀察海馬迴之神經型態與GABA神經傳導物質表現量。Nrg1缺損小鼠雖無明顯地神經細胞型態改變,但在Nrg1缺損公鼠海馬迴的GABA中介神經元表現明顯低落。實驗四進一步使用 GABA相關抗癲癇藥-丙戊酸鈉(Valproate),成功扭轉其在認知作業上的缺損,以期提供病人藥物治療之發展方向。zh_TW
dc.description.abstractAccumulating evidence from human and animal studies suggest that neuregulin 1 (Nrg1) might be involved in the neurodevelopment, GABAergic neurotransmission, and pathogenesis of schizophrenia. Nrg1 belongs to the neuregulin family of growth factors and its expression has been found in many brain regions, especially in the hippocampus. Emerging studies start to reveal that Nrg1 signaling is related to the neural plasticity which might be responsible for the cognitive deficits in schizophrenic patients. To determine the involvement of Nrg1 in cognitive functions and the importance of Nrg1 in the regulation of neuromorphology and neurochemicals in vivo, a new line of Nrg1 mice that carry a truncation of transmembrane (TMc) domain of Nrg1 from exon 9 were generated and used in this study. Both male and female TMc domain-Nrg1+/- mutant mice and their wild-type littermates were used in a series of 4 experiments. In Experiment 1, a comprehensive battery of cognitive-related tasks and basic behavioral tasks was applied to evaluate the behavioral phenotypes of our Nrg1+/- mutant mice. Nrg1+/- mice exhibited a normal profile of basic function but significant impairments in their cognitive functions, especially in males. Experiments 2 and 3 were conducted to reveal conceivable clues for interpreting the observed behavioral deficits. In Experiment 2, pharmacological challenges were conducted. Both males and females received an acute administration of MK-801, methamphetamine, and pentylenetetrazol, respectively. Our data indicated that the injection of PTZ induced significant behavioral alterations in male (but not female) Nrg1+/– mice whereas the other two drugs had no effect, suggesting a potential alteration of GABAergic activity in the brain of mutant males. Neuromorphological and neurochemical alterations in the hippocampus of mutant mice were further examined in Experiment 3, respectively. Neuromorphometric analysis of pyramidal neurons in the CA1 region of hippocampus in these mice revealed that no significant morphological alteration was found. However, a significant reduction of GAD67 and parvalbumin expression level was found in the hippocampus of Nrg1+/– mutant males but not in females. In Experiment 4, we found that the use of valproate, a GABA-related pharmacoepigenomic, successfully rescued observed cognitive deficits in male Nrg1+/– mutant mice. Collectively, these results indicate the importance of Nrg1 in the regulation of hippocampus-related cognitive functions and the expression of hippocampal GABAergic interneurons, especially in males.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:27:45Z (GMT). No. of bitstreams: 1
ntu-102-R98227126-1.pdf: 5202403 bytes, checksum: 32250947821142d3b23531875b6f27d5 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Table of Contents vii
Figures and Tables ix
Chapter 1 General Introduction 1
1. Overview of schizophrenia 1
2. The neurochemistry of schizophrenia 4
3. The etiology of schizophrenia 13
4. What is neuregulin 1 (NRG1)? 15
5. Using genetically engineered animal models to study the role of Nrg1 in the pathogenesis of schizophrenia 24
6. The objective of this study 33
References 39
Chapter 2 Sex- Specific Alteration of Cognitive Function and the Expression of GABAergic Interneurons in Hippocampus of Neuregulin 1 Deficient Mice 65
Introduction 65
Materials and Methods 70
Results 87
Discussion 91
References 120
Chapter 3 General Discussion 139
Nrg1 and the dysregulation of LTP 139
GABA hypothesis of schizophrenia as a primary etiology of schizophrenia 140
Nrg1 modulates sex-specific alteration on GABAergic transmission 142
The epigenetic processes of valproate in Nrg1 mutant 143
The foundation of “second hit”: Nrg1 deficit plays a critical role in interacting with environmental insults 144
All roads lead to common pathway? Different genetic alteration leads to diversity of clinical symptoms of schizophrenia 147
Rethinking biological psychiatry: Nrg1 polymorphisms may confer a wider susceptibility of psychiatric illness 148
References 150
Appendix 159
dc.language.isoen
dc.subject認知作業zh_TW
dc.subject神經形態學zh_TW
dc.subject精神分裂症zh_TW
dc.subjectNrg1zh_TW
dc.subject丙戊酸鈉zh_TW
dc.subject行為表現型zh_TW
dc.subjectGABA 中介神經元zh_TW
dc.subjectNrg1en
dc.subjectschizophreniaen
dc.subjectvalproateen
dc.subjectGABAergic interneuronen
dc.subjectpentylenetetrazolen
dc.subjectneuromorphologyen
dc.subjectbehavioral phenotypingen
dc.title以精神分裂症候選基因Nrg1缺損小鼠為模型-檢驗Nrg1調控海馬迴相關認知作業與海馬迴GABA中介神經元表現之效果zh_TW
dc.titleExamination of the Sex-Specific Effect of Nrg1, a Candidate Gene for Schizophrenia, in the Regulation of Hippocampal Cognitive Functions and the Expression of Hippocampal GABAergic Interneurons – Using Neuregulin 1 Deficient Mice as a Modelen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李立仁,梁庚辰,劉怡均,劉智民
dc.subject.keyword精神分裂症,Nrg1,行為表現型,認知作業,神經形態學,GABA 中介神經元,丙戊酸鈉,zh_TW
dc.subject.keywordschizophrenia,Nrg1,behavioral phenotyping,neuromorphology,pentylenetetrazol,GABAergic interneuron,valproate,en
dc.relation.page163
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved