Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorShih-Che Hungen
dc.contributor.author洪士哲zh_TW
dc.date.accessioned2021-06-16T10:26:50Z-
dc.date.available2018-08-27
dc.date.copyright2013-08-27
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation[1.1] R. Soref and J. Lorenzo, “All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 μm,” IEEE J. Quantum Electron., vol. QE-22, no. 6, pp. 873–879, (1986).
[1.2] R. A. Soref and B. R. Bennett, “Kramers–Kronig analysis of E–O switching in silicon,” in Proc. SPIE Integr. Opt. Circuit Eng., vol. 704, pp. 32–37, (1986).
[1.3] B. Schuppert, J. Schmidtchen, and K. Petermann, “Optical channel waveguides in silicon diffused from GeSi alloy,” Electron. Lett., vol. 25, no. 22, pp. 1500–1502, (1989).
[1.4] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi and Si-on-SiO2,” IEEE J. Quantum Electron, vol. 27, no. 8, pp. 1971–1974, (1991).
[1.5] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, no. 24, pp. 2097–2098, (1995).
[1.6] U. Fischer, T. Zinke, and K. Petermann, “Integrated optical waveguide switches in SOI,” in Proc. IEEE Int. SOI Conf., pp. 141–142, (1995).
[1.7] T. T. H. Eng, S. S. Y. Sin, S. C. Kan, and G. K. L. Wong, “Surface micromachined movable SOI optical waveguides,” in Proc. Int. Conf. Solid-State Sens. Actuators, vol. 1, pp. 348–350, (1995).
[1.8] C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach–Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67, no. 17, pp. 2448–2449, (1995).
[1.9] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “5 × 9 integrated optical star coupler in silicon-on-insulator technology,” IEEE Photon. Technol. Lett., vol. 8, no. 6, pp. 794–796, (1996).
[1.10] P. D. Trinh, S. Yegnanarayanan, F. Coppinger, and B. Jalali, “Silicon on-insulator (SOI) phased-array wavelength multi-demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett., vol. 9, no. 7, pp. 940–942, (1997).
[1.11] B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Topics Quantum Electron., vol. 4, no. 6, pp. 938–947, (1998).
[1.12] B. Jalali, V. Raghunathan, R. Shori, S. Fathpour, D. Dimitropoulos, and O. Stafsudd, “Prospects for silicon mid-IR Raman lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1618-1627, (2006).
[1.13] Kotura Inc. products. [Monograph Online Source]. Available: http://www.kotura.com/
[1.14] C. Gunn, “CMOS photonics for high-speed interconnects,” IEEE Micro, vol. 26, no. 2, pp. 58–66, (2006).
[1.15] D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 6, pp. 1312–1317, (2000).
[1.16] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, “The design and implementation of a first-generation CELL processor,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, pp. 184–592, (2005).
[1.17] K. Chang, S. Pamarti, K. Kaviani, E. Alon, X. Shi, T. J. Chin, J. Shen, G. Yip, C. Madden, R. Schmitt, C. Yuan, F. Assaderaghi, and M. Horowitz, “Clocking and circuit design for a parallel I/O on a firstgeneration CELL processor,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, pp. 526–615 (2005).
[1.18] N. M. Jokerst, M. A. Brooke, S. Cho, M. Thomas, J. Lillie, D. Kim, S. Ralph, and K. Dennis, “Integrated planar lightwave bio/chem OEIC sensors on Si CMOS circuits,” Proc. SPIE, vol. 5730, pp. 226–233, (2005).
[1.19] J. J. Saarinen, J. E. Sipe, S. M. Weiss, and P. M. Fauchet, “Optical sensors based on resonant porous silicon structures,” Opt. Express, vol. 13, no. 10, pp. 3754–3764, (2005).
[1.20] M. Asghari and A. V. Krishnamoorthy, “energy efficient communication,” Nat. photonics, vol. 5, pp. 268-270, (2011).
[1.21] Cisco Visual Networking Index, “Forecast and Methodology 2011-2016,” (2012). [Monograph Online Source] Available: http://citrix.cleanrooms.com/index/ packaging/ packaging-blogs/ap-blog-display._archives.201104.blogs.ap-blog.html.
[1.22] The solid-state technology, “Silicon interposers: building blocks for 3D-ICs,” 3D integration. (2011) [Monograph Online Source] Available: http://citrix.cleanrooms. com/index/packaging/packaging-blogs/ap-blog-display._archives.201104.blogs.ap-blog .html.
[1.23] IBM Inc., “Development of Optical Interconnect PCBs for High-Speed Electronic Systems – Fabricator’s View”, (2011). [Monograph Online Source] Available: http: //www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/file2011+ibm+pcb+symposium+ttm/$file/ttm_optical+interconnect_ext.pdf
[1.24] Ansheng Liu, et al., ”Advances in silicon photonic devices for silicon-based optoelectronic applications,” Physica E, vol. 35, pp. 223–228, (2006).
[1.25] Iacona, F. et al., “Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and Er-doped nanoclusters,” IEEE J. Sel. Top. Quant. Electron., vol. 12, pp. 1596–1606, (2006).
[1.26] Cerutti, L., Rodriguez, J. B. & Tournie, E., “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55 um at room temperature,” IEEE Photon. Tech. Lett., vol. 22, pp. 553–555, (2010).
[1.27] Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J., “Ge-on-Si laser operating at room temperature,” Opt. Lett., vol. 35, pp. 679–681, (2010).
[1.28] Jambois, O. et al., “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters,” Opt. Express, vol. 18, pp. 2230–2235, (2010).
[1.29] Liang, D. & Bowers, J. E., “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate,” J. Vac. Sci. Tech. B, vol. 26, pp. 1560–1568, (2008).
[1.30] Fang, A. W. et al., “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Tech. Lett., vol. 20, pp. 1667–1669, (2008).
[1.31] Lee, B. G., Biberman, A., Chan, J. & Bergman, K., “High-performance modulators and switches for silicon photonic networks‑on‑chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, pp. 6–22, (2010).
[1.32] Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y. A., “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express, vol. 15, pp. 17106–17113, (2007).
[1.33] Gardes, F. Y. et al., “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express, vol. 17, pp. 21986–21991, (2009).
[1.34] Liow, T.-Y. et al., “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quant. Electron., vol. 16, pp. 307–315, (2010).
[1.35] Koester, S. J., Schaub, J. D., Delinger, G. & Chu, J. O., “Germanium-on-SOI infrared detectors for integrated photonic applications,” IEEE. J. Sel. Top. Quant. Electron., vol. 12, pp. 1489–1502, (2006).
[1.36] Osmond, J. et al., “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget,” Appl. Phys. Lett., vol. 94, pp. 201106, (2009).
[1.37] Wikipedia, “CMOS,” [Monograph Online Source] Available: http://en.wikipedia.org/ wiki/CMOS
[1.38] Advanced Substrate News, “Photonics on the move,” [Monograph Online Source] Available: http://www.advancedsubstratenews.com/2011/04/photonics-on-the-move/
[2.1] R. G. Hunsperger, “Integrated optics theory and technology,” Springer, (2002).
[2.2] A. Yariv, “Optical electronics in modern communications,” Oxford University Press, New York, Oxford, (1997).
[2.3] D. T. F. Marple, “Refractive index of GaAs,” J. Appl. Phys., vol. 35, pp. 1241, (1964).
[2.4] M. A. McCord and M. J. Rooks, “Microlithography, Micromachining and Microfabrication,” SPIE Handbook, (2000).
[2.5] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Pearson Education Taiwan Ltd, (2001).
[2.6] Jaeger, Richard C. 'Thermal Oxidation of Silicon'. Introduction to Microelectronic Fabrication,” Upper Saddle River: Prentice Hall (2001).
[2.7] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. , vol. 26, pp. 977, (1994).
[2.8] N. K. Uzunoglu, J. G. Fikioris, “Scattering from an inhomogeneity inside a dielectric-slab waveguide,” J. Opt. Soc Am., vol. 72, pp. 628, (1982).
[2.9] A. Bostrom, P. Olsson, “Transmission and reflection of electromagnetic waves by an obstacle inside a waveguide,” J. Appl. Phys., vol. 52, pp. 1187, (1981).
[2.10] A. Yariv, “Introduction to optical Electronics,” 2nd edn., Holt, Rinehart and Winston, New York, (1976).
[2.11] S. E. Miller, “Mode conversation caused by surface imperfections of a dielectric slab waveguide,” Bell Syst. tech. J., vol. 48, pp. 3187, (1969).
[3.1] International Technology Roadmap for Semiconductor (ITRS) Organization, “Interconnect solution,” Interconnects (IRTS 2011) [Monograph Online Source]. Available: http://www.itrs.net
[3.2] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics., vol. 4, pp. 519-526, (2010).
[3.3] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, ”42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express, vol. 19, no. 12, pp. 11841-11851, (2011).
[3.4] H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron., vol. 46, no. 12, pp. 1763-1768, (2010).
[3.5] J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics, vol. 4, pp.527-534, (2010).
[3.6] T. Spuesens, F. Mandorlo, P. R. Romeo, P. Regreny, N. Olivier, J. M. Fedeli, and D. V. Thourhout, “Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line,” J. Lightwave Technol., vol. 30, no. 11, pp. 1764-1770, (2012).
[3.7] J. H. Chen, Y. T. Huang, Y. L. Yang, and M. F. Lu, “Design, fabrication, and characterization of Si-based arrow-B photonic crystal sharp-bend waveguides and power splitters,” J. Lightwave Technol., vol. 30, no. 14, pp. 2345-2351, (2012).
[3.8] T. Usuki, “Robust optical data transfer on silicon photonic chip,” J. Lightwave Technol., vol. 30, no. 18, pp. 2933-2940, (2012).
[3.9] S. D. Nicolas, A. Gondarenko, and M. Lipson, “Oxidized Silicon-On-Insulator (OxSOI) from bulk silicon: a new photonic platform,” Opt. Express, vol. 18, no. 6, pp. 5785-5790, (2010).
[3.10] R. Koh, “Buried layer engineering to reduce the drain-induced barrier lowering of Sub-0.05 μm SOI MOSFET,” Jpn. J. Appl. Phys., vol. 38 (Part 1, no. 4B), pp. 2294–2299, (1999).
[3.11] J. M. Fedeli, M. Migette, L. Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojo-Romeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, “Incorporation of a photonic layer at the metallizations levels of a CMOS circuit,” in Group IV Photonics, 3rd IEEE International Conf. Dig. Tech. papers, pp. 200–202, (2006).
[3.12] M. C. Tien, J. F. Bauters, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability,” Opt. Express, vol. 18, no. 23, pp. 23562-23568, (2010).
[3.13] W. Stutius, and W. Streifer, “Silicon nitride films on silicon for optical waveguides,” Appl. Opt., vol., 16, no. 12, pp. 3218-3222, (1977).
[3.14] T. Asukai, M. Inamoto, T. Maruyama, K. Iiyama, K. Ohdaira, and H. Matsumura, “Propagation loss of amorphous silicon optical waveguides at the 0.8 μm-wavelength range,” in Group IV Photonics (GFP), 7th IEEE International Conf. Dig. Tech. Papers, pp. 269 – 271, (2010).
[3.15] S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability,” Opt. Express, vol. 18, no. 24, pp. 25284-25291, (2010).
[3.16] F. Y. Gardes, G. T. Reed, A. P. Knights, G. Mashanovich, P. E. Jessop, L. Rowe, S. McFaul, D. Bruce, and N. G. Tarr, “Sub-micron optical waveguides for silicon photonics formed via the local oxidation of silicon (LOCOS),”in Silicon Photonics III, SPIE, San Jose, CA, USA, pp. 68980R–68984, (2008)
[3.17] R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt., vol. 48, no. 5, pp. 958–963, (2009).
[3.18] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, C. Y. Lu, and G. R. Lin, “Fabrication of low-loss silicon photonic wires by self-profile transformation and applications in three-dimensional photonic integration and nonlinear optics,” IEEE J. Quantum Electron., vol. 46, no. 5, pp. 650-657, (2010).
[3.19] E. Z. Liang, C. J. Huang, and C. F. Lin, “Use of SiO2 nanoparticles as etch mask to generate Si nanorods by reactive ion etch,” J. Vac. Sci. Technol. B, vol. 24, pp. 599-603, (2006).
[3.20] S. C. Hung, E. Z. Liang, and C. F. Lin, “Silicon waveguide sidewall smoothing by KrF Excimer laser reformation,” J. Lightwave Technol., vol. 27, no. 7, pp. 887-892, (2009).
[3.21] S. C. Hung, S. C. Shiu, and C. H. Chao, and C. F. Lin, “Fabrication of crystalline Si spheres with atomic-scale surface smoothness using homogenized KrF excimer laser reformation system,” J. Vac. Sci. Technol. B, vol. 27, pp. 1156-1160, (2009).
[3.22] D. T. Papageorgiou, “On the breakup of viscous liquid threads,” Phys. Fluids, vol. 7, no. 7, pp. 1529–1521, (1995).
[3.23] E. Z. Liang, S. C. Hung, Y. P. Hsieh, C. F. Lin, “Effective energy densities in KrF excimer laser reformation as a sidewall smoothing technique,” J. Vac. Sci. Technol. B, vol. 26, pp. 110-116, (2008).
[3.24] D. V. Thourhout, W. Bogaerts, and P. Dunon, “Submicron silicon strip waveguides,” in Optical Interconnects, L. Pavesi and G. Guillot., Ed., Springer Berlin Heidelberg vol. 119, pp 205-237, (2006).
[3.25] S. C. Hung, S. J. Lin, J. J. Chao, and C. F. Lin, “Formation of crystalline Si optical waveguides on (100) Si substrate as a new platform for interconnect applications,” unpublished. (2013)
[4.1] B. Y. Tsui, and C. P. Lin, “A novel 25-nm modified Schottky-barrier FinFET with high performance,” IEEE Electron Device Letters, vol. 25, pp. 430-432, (2004).
[4.2] International Technology Roadmap for Semiconductor (ITRS) Organization, “Interconnect solution,” Interconnects (IRTS 2011), pp. 52-66. (2012, Jan., 1st) [Monograph Online Source] Available: http://www.itrs.net
[4.3] The solid-state technology, “Silicon interposers: building blocks for 3D-ICs,” 3D integration (2011, Jun.). [Monograph Online Source]. Available: http://citrix. cleanrooms.com/index/packaging/packaging-blogs/ap-blog-display._archives .201104.blogs.ap-blog.html.
[4.4] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, pp. 519-526, (2010).
[4.5] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, ”42.7Gbit/s electro-optic modulator in silicon technology,” Opt. Express, vol. 19, pp. 11841-11851, (2011).
[4.6] H. Yu, W. Bogaerts, and A. D. Keersgieter, “Optimization of ion implantation condition for depletion-type silicon optical modulators,” IEEE J. Quantum Electron., vol. 46, pp. 1763-1768, (2010).
[4.7] J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics, vol. 4, pp. 527-534, (2010).
[4.8] T. Spuesens, F. Mandorlo, P. R. Romeo, P. Regreny, N. Olivier, J. M. Fedeli, and D. V. Thourhout, “Compact integration of optical sources and detectors on SOI for optical interconnects fabricated in a 200 mm CMOS pilot line,” J. Lightwave Technol., vol. 30, pp. 1764-1770, (2012).
[4.9] J. H. Chen, Y. T. Huang, Y. L. Yang, and M. F. Lu, “Design, fabrication, and characterization of Si-based arrow-B photonic crystal sharp-bend waveguides and power splitters,” J. Lightwave Technol., vol. 30, pp. 2345-2351, (2012).
[4.10] T. Usuki, “Robust optical data transfer on silicon photonic chip,” J. Lightwave Technol., vol. 30, pp. 2933-2940, (2012).
[4.11] Iacona, F. et al., “Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and Er-doped nanoclusters.” IEEE J. Sel. Top. Quant. Electron., vol. 12, pp. 1596–1606, (2006).
[4.12] Cerutti, L., Rodriguez, J. B. & Tournie, E., “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55 um at room temperature.” IEEE Photon. Tech. Lett., vol. 22, pp. 553–555, (2010).
[4.13] Liu, J., Sun, X., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J., “Ge-on-Si laser operating at room temperature.” Opt. Lett., vol. 35, pp. 679–681, (2010).
[4.14] Jambois, O. et al., “Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters.” Opt. Express, vol. 18, pp. 2230–2235, (2010).
[4.15] Liang, D. & Bowers, J. E., “Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator (SOI) substrate.,” J. Vac. Sci. Tech. B, vol. 26, pp. 1560–1568, (2008).
[4.16] Fang, A. W. et al., “A distributed Bragg reflector silicon evanescent laser.,” IEEE Photon. Tech. Lett., vol. 20, pp. 1667–1669, (2008).
[4.17] Lee, B. G., Biberman, A., Chan, J. & Bergman, K., “High-performance modulators and switches for silicon photonic networks on chip,” IEEE J. Sel. Top. Quant. Electron., vol. 16, pp. 6–22, (2010).
[4.18] Green, W. M., Rooks, M. J., Sekaric, L. & Vlasov, Y., “A. Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator., “Opt. Express, vol. 15, pp. 17106–17113, (2007).
[4.19] Gardes, F. Y. et al., “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode., “Opt. Express, vol. 17, pp. 21986–21991, (2009).
[4.20] Liow, T.-Y. et al., “Silicon modulators and germanium photodetectors on SOI: Monolithic integration, compatibility, and performance optimization.,” IEEE J. Sel. Top. Quant. Electron., vol. 16, pp. 307–315 (2010).
[4.21] Koester, S. J., Schaub, J. D., Delinger, G. & Chu, J. O., “Germanium-on-SOI infrared detectors for integrated photonic applications.,” IEEE. J. Sel. Top. Quant. Electron., vol. 12, pp. 1489–1502, (2006).
[4.22] Osmond, J. et al., “Ultralow dark current Ge/Si(100) photodiodes with low thermal budget., “Appl. Phys. Lett., vol. 94, pp. 201106, (2009).
[4.23] D. T. Papageorgiou, “On the breakup of viscous liquid threads,” Phys. Fluids, vol. 7, pp. 1529–1521, (1995).
[4.24] S. C. Hung, S. J. Lin, J. J. Chao, and C. F. Lin, “Fabrication of crystalline Si waveguides on (100) bulk Si substrate using laser reformation method,” submitted to J. Lightwave Technol., (2013).
[4.25] M. C. M. Lee, W. C. Chiu, T. M. Yang, C. H. Chen, C. Y. Lu, and G. R. Lin, “Fabrication of low-loss silicon photonic wires by self-profile transformation and applications in three-dimensional photonic integration and nonlinear optics,” IEEE J. Quantum Electron., vol. 46, pp. 650-657, (2010).
[4.26] F. Ladouceur, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc.-J: Optoelectron., vol. 141, pp. 242, (1994).
[4.27] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, pp. 977, (1994).
[4.28] H. A. Haus, “Waves and fields in optoelectronics,” Prentice-hall, pp. 87-93, (1985).
[5.1] B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol., vol. 24, pp. 4600-4615, (2006).
[5.2] K. K. Lee, D. R. Lim, H.-C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett., vol. 77, pp. 1617, (2000).
[5.3] K. K. Lee, D. R. Lim, and L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett., vol. 26, pp. 1888, (2001).
[5.4] A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh optical waveguide on silicon-on-insulator substrate,' Jpn. J. Appl. Phys. Part 2, vol. 4B, pp. L383, (2001).
[5.5] P. Dumon, W. Bogaerts, J. Van Campenhout, V. Wiaux, J. Wouters, S. Beckx, and R. Baets, “Low-loss photonic wires and compact ring resonators in silicon-on-insulator,” LEOS Benelux Annual Symposium 2003, Netherlands, (2003).
[5.6] T. Tsuchizawa,T. Watanabe, E. Tamechika, T. Shoji, K. Yamada, J. Takahashi, S. Uchiyama, S. Itabashi and H. Morita, “Fabrication and evaluation of submicron-square Si wire waveguides with spot-size converters”, Paper TuU2 presented at LEOS Annual Meeting, Glasgow, UK, pp. 287, (2002).
[5.7] H. Kuribayashi, R. Hiruta, and R. Shimizu, K. Sudoh and H. Iwasaki, “Shape transformation of silicon trenches during hydrogen annealing,” J. Vac. Sci. Technol. A, vol. 21, pp. 1279, (2003).
[5.8] J. Takahashi, T. Tsuchizawa, T. Watanabe, and S. Itabashi, “Oxidation-induced improvement in the sidewall morphology and cross-sectional profile of silicon wire waveguides,” J. Vac. Sci. Technol. B, vol. 22, pp. 2522, (2004).
[5.9] D.K. Sparacin, S.J. Spector, and L.C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol., vol. 23, pp. 2455, (2005).
[5.10] M.C. Ferrara, M.R. Perrone, M.L. Protopapa, J. Sancho-Parramon, S. Bosch, and S. Mazzarelli, “High mechanical damage resistant sol-gel coating for high power lasers,” Proceedings of SPIE - The International Society for Optical Engineering, v5250, pp. 537-545 (2004).
[5.11] G. Yaron and L. D. Hess, “LASOS Laser annealed silicon on sapphire,” IEEE Trans. Electro. Dev. ED-27, pp. 573-578 (1980).
[5.12] E.Z. Liang, C.J. Huang, and C.F. Lin, “Use of SiO2 nanoparticles as etch mask to generate Si nanorods by reactive ion etch,” J. Vac. Sci. Technol. B, vol. 24, pp. 599-603, (2006).
[5.13] K.A. Reihardt, S.M. Kelso “The use of beam profile reflectometry to determine depth of silicon etch damage and contamination,” Proceedings of SPIE 2638, pp. 147-158 (1995).
[5.14] F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides”, IEEE Photonics Technology Letters, vol. 16, no. 7, pp. 1661-1663 (2004).
[5.15] F. Ladouceur, J. D. Love, and T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc.-J: Optoelectron., vol. 141, pp. 242, (1994).
[5.16] F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron., vol. 26, pp. 977, (1994).
[5.17] D. Marcuse, “Mode conversion caused by surface imperfections of dielectric slab waveguide,” Bell Syst. Tech. J., vol. 48, pp. 3187, (1969).
[5.18] E. Z. Liang, “Fabrication and Characterization of Electroluminescent Metal-Oxide- Semiconductor Silicon Tunneling Diodes,” Ph.D. dissertation in Graduate institute of photonics and optoelectronics, National Taiwan University, (2006).
[5.19] Koichi Sudoh, Hiroshi Iwasaki, Hitoshi Kuribayashi, Reiko Hiruta and Ryosuke Shimizu, “Numerical Study on Shape Transformation of Silicon Trenches by High-Temperature Hydrogen Annealing,” Jap. J. Appl. Phys., vol. 43, no. 9A, pp. 5937–5941 (2004).
[5.20] M. A. Green, J. Zhao, A. Wang, P. J. Reece, M. Gal, “Efficient silicon light-emitting diodes” Nature, vol. 412, pp. 805 (2001).
[6.1] Cai, M., Painter O., and Vahala K. J., “ Fiber-coupled microsphere laser,” Opt. Lett., vol. 25, pp. 1430–1432, (2000).
[6.2] Bilici, T., Is-ci, S., Kurt, A., and Serpeng.uzel, A., “Microsphere-Based Channel Dropping Filter With an Integrated Photodetector,” IEEE Photonics Technol. Lett., vol. 16, pp. 476–478, (2004).
[6.3] Tapalian, H.C., Laine, J.P., and Lane, P.A., “Thermooptical switches using coated microsphere resonators,” IEEE Photonics Technol. Lett., vol. 14, pp. 1118–1120 (2002).
[6.4] Teraoka, I., Arnold, S., and Vollmer, F., “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B: Opt. Phys., vol. 20, pp. 1937–1946, (2003).
[6.5] Laine, J. P., Tapalian, H. C., Little, B. E., and Haus, H. A., “Acceleration sensor based on high-Q optical microsphere resonator and pedestal antiresonant reflecting waveguide coupler,” Sens. Actuators A, Phys. A, vol. 93, pp. 1-7, (2001).
[6.6] Matsko, A.B., Savchenkov, A.A., Ilchenko, V.S., and Maleki, L., “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Commun., vol. 233, pp. 107–112 (2004).
[6.7] Chang, R.K. and Campillo, “Optical processes in microcavities,” A.J. (Eds.), World Scientific, Singapore, (1996).
[6.8] Spillane, S.M., Kippenberg, J.T., and Vahala, K.J., “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature, vol. 415, pp. 621–623, (2002).
[6.9] P. Jeuch, J. P. Joly, and J. M. Hode, “Laser and Electron Beam Interactions with Solids,” Proc. Materials Research Society Annual Meeting. Amsterdam, Netherlands, pp. 603–608, (1982).
[6.10] H. Yang, C. Ching-Kong, W. Mau-Kuo, and L. Che-Ping, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng., vol. 14, pp. 1197–1204, (2004).
[6.11] E. Z. Liang, C. J. Huang, and C. F. Lin, “Use of SiO2 nanoparticles as etch mask to generate Si nanorods by reactive ion etch,” J. Vac. Sci. Technol. B, vol. 24, pp. 599-603 (2006).
[6.12] Kevin K. Lee, Desmond R. Lim, Hsin-Chiao Luan, Anuradha Agarwal, James Foresi, and Lionel C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model,” Appl. Phys. Lett., vol. 77, no. 11, pp. 1617, (2000).
[6.13] Yurii A. Vlasov and Sharee J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Exp., vol. 12, no. 8, pp. 1622, (2004).
[6.14] Wim Bogaerts, Peter Bienstman, and Roel Baets, “Scattering at sidewall roughness in photonic crystal slabs,” Opt. Lett., vol. 28, no. 9, pp. 689, (2003).
[6.15] E.Z. Liang, “Fabrication and Characterization of Electroluminescent Metal-Oxide-Semiconductor Silicon Tunneling Diodes,” Ph. D. dissertation in Graduate institute of photonics and optoelectronics, National Taiwan University, (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60706-
dc.description.abstract光學於短矩離資料傳輸是一個可靠,有希望的替代方式。在這裡,我們利用準分子雷射重整系統研發新進的製程方法製備高相容性且低損耗的矽光波導結構。這個研究解決了製作光子元件與電子元件於同一晶片上的整合問題,同時有效降低光波導的傳輸損耗。利用形貌調變的方式,我們直接製單晶矽波導結構於一般的純矽基板上。這個方法克服了矽光子元件必須使用絕緣層上矽平台的限制。它代表了一個製作可靠的矽波導結構於半導體製程相容的純矽基板的方法,同時顯示整合光子元件與電子元件於同一晶片的潛力。此外,我們利用準分子雷射系統解決了由於蝕刻所造成的側表面粗糙的問題。在適合的雷射能量下,傳輸損耗從原本的4.2 ± 0.2 dB/cm降到 2 ± 0.2 dB/cm。另一方面,我們利用準分子雷射製作次微米矽球結構。這個結構具有超高質量因子的迴音壁模態,適合於各式的光子元件應用。zh_TW
dc.description.abstractOptics is a promising alternative for short-reach data interconnections. In this work, the fabrication method of CMOS-compatible low-loss Si waveguiding structures by KrF Excimer laser reformation system is studied. The study solves the on-chip integration issues between electronics and photonics, as well as reduces the propagation loss for on-chip optical interconnect applications. Crystalline Si waveguides on a pure Si substrate by using a profile modification method is demonstrated for the first time. It overcomes the limitation of using a SOI platform in Si photonics. This represents a viable method to create reliable Si waveguides on CMOS-compatible Si substrate and shows the potential of Si photonic devices when they are integrated with Si electronics. In addition, sidewall smoothing for silicon ridge waveguides is presented. Propagation loss is measured using grating couplers and spiral samples. Under proper laser treatment, the propagation losses are reduced from 4.2 ± 0.2 dB/cm to 2 ± 0.2 dB/cm. It shows at least 50% loss reduction. Furthermore, the fabrication of sub-micron Si spheres is presented. The Si spheres have mono-crystalline property and ultra-smooth surface. It supports the whispering gallery modes with ultra-high quality-factor and is suitable for various photonic applications.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:26:50Z (GMT). No. of bitstreams: 1
ntu-102-D94941011-1.pdf: 8541704 bytes, checksum: 97b0bbfdb46f236de31199445ce97af6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents
誌謝………………………………………………………………………………..…………..1
Abstract………………………………………………………………………………………..2
中文摘要………………………………………………………………………………………3
List of Figure Caption……………………………………………………………………..…8
List of Table Caption……………………………………………………………………..…13
Chapter 1 Introduction…………………………………………………………..…………14
1-1 Backgrounds of Si Photonics……………………………………………………...14
1-2 Introduction to Optical Interconnects…………………………………………......18
1-3 Outlines………………………………………………………………..………......23
Reference (38)….…………………………………………………………..………......28
Chapter 2 Fundamental of Si Optical Waveguides…………………………….…………34
2-1 Theoretical Description of Optical Waveguide Modes………...………….………34
2-2 Fabrication Techniques of Si Waveguides…………………………………………37
2-2-1 Electron-beam lithography………………………………………………….39
2-2-2 Reactive ion etch…………………………………………………………….39
2-2-3 Dry oxidation……………………………………………………………….40
2-3 Losses in Optical Waveguides……………………………………………………..41
2-3-1 Scattering loss………………………………………………………………41
2-3-2 Absorption loss…………………………………………………….………..42
2-3-3 Radiation loss…………………………………………………….…………44
Reference (11)…………………………………………………………………………..46
Chapter 3 Fabrication of Crystalline Si Waveguides on (100) Bulk Si Substrate
Using Laser Reformation Method …………………………………………....48
3-1 Introduction………………………………………………………………………..48
3-2 Fabrication Process of Crystalline Si Waveguides on Bulk Si substrates….….…50
3-3 Plateau–Rayleigh Instability………………………………………………………53
3-4 Two-Dimensional Time-Independent Heat Transfer
Simulation for Fin Structures………..………………...…………………………..54
3-5 Thermal Oxidation Process to Separate Si Waveguide
Structure from the Substrate…………………………...…………………………..58
3-6 Crystallinity Observation by High-Resolution Tunneling
Electron Microscope (HR-TEM)…………………………………………………60
3-7 Wave Guiding Property of the Fabricated Waveguide……………………………61
3-8 Summary…………………………………………………………..………………64
Reference (25).....………………………………………………………………………65
Chapter 4 Formation of Crystalline Si Optical Waveguides from (100)
Si Substrate as New Platform for Interconnect Applications………………..70
4-1 Introduction……………………………………………………………………..…70
4-2 The Concept Using Profile Modification Method…………………………………71
4-3 The Raman Scattering Spectrum for laser-reformed structures…………………..74
4-4 Optical Modes of Fabricated Si Waveguides……………………………………...77
4-5 Scattering Loss of Fabricated Si Waveguides……………………………………..79
4-6 Characteristics of the Fabricated Waveguide……………………………………...80
4-7 Experimental Details………………………………………………………………83
4-7-1 Fabrication Process…………….……………………………………………83
4-7-2 Excimer Laser System Set Up..……………………………………………..84
4-7-3 Measurement Set up………………………………………………………...85
4-8 Summary…………………………………………………………………………..86
Reference (28)…….……………………………………………………………………87
Chapter 5 Si Waveguide Sidewall Smoothing by Excimer Laser Reformation…………91
5-1 Introduction………………………………………………………………………..91
5-2 Calculation of Scattering Loss…………….......…………………………………..92
5-3 Spiral Waveguide Samples and Process Set Up…………………………………..96
5-4 Profile Deformation………………………..………………………………………98
5-5 Transmission Measurement…………………………………………………….101
5-6 Comparison with Other Sidewall Smoothing Method……………….…………..105
5-7 Summary………………………………………………………...……………….106
Reference (20)………………………………………………………………………..108
Chapter 6 Fabrication of Crystalline Si Spheres with Atomic-scale Surface Smoothness Using Homogenized KrF Excimer Laser Reformation System…….……….111
6-1 Introduction………………………………………………………………………111
6-2 Fabrication Process………………………………………………………………112
6-3 Si rods by Anisotropic RIE etching……………..………………………………..114
6-4 Sub-Micron Spheres…………………………………………...…………………116
6-5 Surface Roughness of Si Sub-Micron Spheres…………………………………..119
6-6 Crystallinity of Si Sub-Micron Spheres………………………………………….120
6-7 Summary………………………………………………………………..………..121
Reference (15).…………………………………………………….………………….123
Chapter 7 Conclusion……………………………………………………..……………….126
dc.language.isoen
dc.subject準分子雷射zh_TW
dc.subject光波導zh_TW
dc.subject矽光子元件zh_TW
dc.subjectexcimer laseren
dc.subjectoptical waveguidesen
dc.subjectSi photonicsen
dc.title利用氟化氪準分子雷射重整系統製備高相容性低損耗矽光波導結構zh_TW
dc.titleFabrication of CMOS-Compatible Low-Loss Si Waveguide Structures by KrF Excimer Laser Reformation Systemen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee李三良(San-Liang Lee),王倫(Lon Wang),邱奕鵬(Yih-Peng Chiou),黃鼎偉(Ding-wei Huang),蔡永傑(Wing-Kit Choi)
dc.subject.keyword準分子雷射,光波導,矽光子元件,zh_TW
dc.subject.keywordexcimer laser,optical waveguides,Si photonics,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved