Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美
dc.contributor.authorXiang-Jun Shengen
dc.contributor.author盛湘君zh_TW
dc.date.accessioned2021-06-16T10:26:45Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citationAlam J, Stewart D, Touchard C, Boinapally S, Choi AM, Cook JL (1999) Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene. J Biol Chem 274:26071-26078.
Ardley HC, Scott GB, Rose SA, Tan NG, Markham AF, Robinson PA (2003) Inhibition of proteasomal activity causes inclusion formation in neuronal and non-neuronal cells overexpressing Parkin. Mol Biol Cell 14:4541-4556.
Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241-272.
Baranano DE, Snyder SH (2001) Neural roles for heme oxygenase: contrasts to nitric oxide synthase. Proc Natl Acad Sci U S A 98:10996-11002.
Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205-214.
Beilina A, Van Der Brug M, Ahmad R, Kesavapany S, Miller DW, Petsko GA, Cookson MR (2005) Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A 102:5703-5708.
Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, Dekker MC, Squitieri F, Ibanez P, Joosse M, van Dongen JW, Vanacore N, van Swieten JC, Brice A, Meco G, van Duijn CM, Oostra BA, Heutink P (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256-259.
Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2:484-494.
Chien WL, Lee TR, Hung SY, Kang KH, Lee MJ, Fu WM (2011) Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1. J Neurochem 117:643-653.
Chien WL, Lee TR, Hung SY, Kang KH, Wu RM, Lee MJ, Fu WM (2013) Increase of oxidative stress by a novel PINK1 mutation, P209A. Free Radic Biol Med 58:160-169.
Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13-21.
Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427-446.
Clark JE, Foresti R, Green CJ, Motterlini R (2000) Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochem J 348 Pt 3:615-619.
Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801-847.
Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889-909.
de Lau LM, Breteler MM (2006) Epidemiology of Parkinson's disease. Lancet Neurol 5:525-535.
Dexter DT, Carter CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52:381-389.
Ding Q, Keller JN (2001) Proteasome inhibition in oxidative stress neurotoxicity: implications for heat shock proteins. J Neurochem 77:1010-1017.
Ding Q, Bruce-Keller AJ, Chen Q, Keller JN (2004) Analysis of gene expression in neural cells subject to chronic proteasome inhibition. Free Radic Biol Med 36:445-455.
Dreger H, Westphal K, Weller A, Baumann G, Stangl V, Meiners S, Stangl K (2009) Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc Res 83:354-361.
Galea E, Launay N, Portero-Otin M, Ruiz M, Pamplona R, Aubourg P, Ferrer I, Pujol A (2012) Oxidative stress underlying axonal degeneration in adrenoleukodystrophy: a paradigm for multifactorial neurodegenerative diseases? Biochim Biophys Acta 1822:1475-1488.
Gandhi S, Wood NW (2005) Molecular pathogenesis of Parkinson's disease. Hum Mol Genet 14 Spec No. 2:2749-2755.
Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373-428.
Goldbaum O, Vollmer G, Richter-Landsberg C (2006) Proteasome inhibition by MG-132 induces apoptotic cell death and mitochondrial dysfunction in cultured rat brain oligodendrocytes but not in astrocytes. Glia 53:891-901.
Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895-899.
Grune T, Reinheckel T, Davies KJ (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11:526-534.
Han YH, Park WH (2010) MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level. Hum Exp Toxicol 29:607-614.
Haque ME, Thomas KJ, D'Souza C, Callaghan S, Kitada T, Slack RS, Fraser P, Cookson MR, Tandon A, Park DS (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci U S A 105:1716-1721.
Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600-609.
Hochstrasser M (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124:27-34.
Hoepken HH, Gispert S, Morales B, Wingerter O, Del Turco D, Mulsch A, Nussbaum RL, Muller K, Drose S, Brandt U, Deller T, Wirth B, Kudin AP, Kunz WS, Auburger G (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401-411.
Ishikawa A, Takahashi H (1998) Clinical and neuropathological aspects of autosomal recessive juvenile parkinsonism. J Neurol 245:P4-9.
Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208-1213.
Jaiswal AK (2004) Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 36:1199-1207.
Jesenberger V, Jentsch S (2002) Deadly encounter: ubiquitin meets apoptosis. Nat Rev Mol Cell Biol 3:112-121.
Jozkowicz A, Was H, Dulak J (2007) Heme oxygenase-1 in tumors: is it a false friend? Antioxid Redox Signal 9:2099-2117.
Jung T, Catalgol B, Grune T (2009) The proteasomal system. Mol Aspects Med 30:191-296.
Kastle M, Woschee E, Grune T (2012) Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition. Free Radic Biol Med 53:2092-2101.
Kawajiri S, Saiki S, Sato S, Hattori N (2011) Genetic mutations and functions of PINK1. Trends Pharmacol Sci 32:573-580.
Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J Neurochem 85:115-122.
Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8:739-758.
Klein C, Schlossmacher MG (2006) The genetics of Parkinson disease: Implications for neurological care. Nat Clin Pract Neurol 2:136-146.
Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093-2104.
Klinkenberg M, Thurow N, Gispert S, Ricciardi F, Eich F, Prehn JH, Auburger G, Kogel D (2010) Enhanced vulnerability of PARK6 patient skin fibroblasts to apoptosis induced by proteasomal stress. Neuroscience 166:422-434.
Kohda K (2013) Aged Garlic Extract Reduces ROS Production and Cell Death Induced by 6-Hydroxydopamine through Activation of the Nrf2-ARE Pathway in SH-SY5Y Cells. Pharmacology & Pharmacy 04:31-40.
Le WD, Xie WJ, Appel SH (1999) Protective role of heme oxygenase-1 in oxidative stress-induced neuronal injury. J Neurosci Res 56:652-658.
Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397-403.
Lee MH, Hyun DH, Jenner P, Halliwell B (2001) Effect of proteasome inhibition on cellular oxidative damage, antioxidant defences and nitric oxide production. J Neurochem 78:32-41.
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein MJ, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson KD, Polymeropoulos MH (1998) The ubiquitin pathway in Parkinson's disease. Nature 395:451-452.
Luchtman DW, Meng Q, Wang X, Shao D, Song C (2013) omega-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 124:855-868.
McCord JM, Edeas MA (2005) SOD, oxidative stress and human pathologies: a brief history and a future vision. Biomed Pharmacother 59:139-142.
McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett 297:191-194.
McNaught KS, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat Rev Neurosci 2:589-594.
McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson's disease. Exp Neurol 179:38-46.
Meiners S, Ludwig A, Stangl V, Stangl K (2008) Proteasome inhibitors: poisons and remedies. Med Res Rev 28:309-327.
Melo A, Monteiro L, Lima RM, Oliveira DM, Cerqueira MD, El-Bacha RS (2011) Oxidative stress in neurodegenerative diseases: mechanisms and therapeutic perspectives. Oxid Med Cell Longev 2011:467180.
Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci 28:57-87.
Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549-557.
Muqit MM, Abou-Sleiman PM, Saurin AT, Harvey K, Gandhi S, Deas E, Eaton S, Payne Smith MD, Venner K, Matilla A, Healy DG, Gilks WP, Lees AJ, Holton J, Revesz T, Parker PJ, Harvey RJ, Wood NW, Latchman DS (2006) Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J Neurochem 98:156-169.
Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4:192-201.
Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422-428.
Paisan-Ruiz C et al. (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44:595-600.
Petit A, Kawarai T, Paitel E, Sanjo N, Maj M, Scheid M, Chen F, Gu Y, Hasegawa H, Salehi-Rad S, Wang L, Rogaeva E, Fraser P, Robinson B, St George-Hyslop P, Tandon A (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280:34025-34032.
Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55-72.
Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, Sanges G, Stenroos ES, Pho LT, Schaffer AA, Lazzarini AM, Nussbaum RL, Duvoisin RC (1996) Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 274:1197-1199.
Poulopoulos M, Levy OA, Alcalay RN (2012) The neuropathology of genetic Parkinson's disease. Mov Disord 27:831-842.
Reaney SH, Johnston LC, Langston WJ, Di Monte DA (2006) Comparison of the neurotoxic effects of proteasomal inhibitors in primary mesencephalic cultures. Exp Neurol 202:434-440.
Rubio V, Valverde M, Rojas E (2010) Effects of atmospheric pollutants on the Nrf2 survival pathway. Environ Sci Pollut Res Int 17:369-382.
Ryter SW, Alam J, Choi AM (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 86:583-650.
Ryter SW, Otterbein LE, Morse D, Choi AM (2002) Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234-235:249-263.
Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson's disease. J Neurosci 22:10690-10698.
Schapira AH (2008) Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol 7:97-109.
Schipper HM (2004) Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37:1995-2011.
Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D (2009) Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 110:469-485.
Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, Casari G (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477-3492.
Sim CH, Lio DS, Mok SS, Masters CL, Hill AF, Culvenor JG, Cheng HC (2006) C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet 15:3251-3262.
Sun F, Kanthasamy A, Anantharam V, Kanthasamy AG (2007) Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson's disease. Pharmacol Ther 114:327-344.
Tahirovic I, Sofic E, Sapcanin A, Gavrankapetanovic I, Bach-Rojecky L, Salkovic-Petrisic M, Lackovic Z, Hoyer S, Riederer P (2007) Brain antioxidant capacity in rat models of betacytotoxic-induced experimental sporadic Alzheimer's disease and diabetes mellitus. J Neural Transm Suppl:235-240.
Tanaka K (1998) Proteasomes: structure and biology. J Biochem 123:195-204.
Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279:4625-4631.
Thomas B, Beal MF (2007) Parkinson's disease. Hum Mol Genet 16 Spec No. 2:R183-194.
Tisdale MJ (2002) Cachexia in cancer patients. Nat Rev Cancer 2:862-871.
Valente EM et al. (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158-1160.
Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93:14960-14965.
Vila M, Przedborski S (2004) Genetic clues to the pathogenesis of Parkinson's disease. Nat Med 10 Suppl:S58-62.
Wu WT, Chi KH, Ho FM, Tsao WC, Lin WW (2004) Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem J 379:587-593.
Xie HR, Hu LS, Li GY (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin Med J (Engl) 123:1086-1092.
Yew EH, Cheung NS, Choy MS, Qi RZ, Lee AY, Peng ZF, Melendez AJ, Manikandan J, Koay ES, Chiu LL, Ng WL, Whiteman M, Kandiah J, Halliwell B (2005) Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. J Neurochem 94:943-956.
Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154:1423-1429.
Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509-517.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60704-
dc.description.abstract巴金森氏症是一種慢性、漸進性發展的動作失調症,也是目前最常見的神經退化性疾病之一。它的主要特徵為大腦黑質緻密部中有大量多巴胺神經元受損的情形。目前在臨床上,僅施予症狀性的治療,而對於神經的死亡則尚未能有效抑制。雖然巴金森氏症的病因尚不明確,目前的許多研究中指出,粒線體功能缺失、氧化壓力、泛素-蛋白酶體系統的異常及不正常的蛋白積聚等,都可能是導致巴金森氏症的重要致病因素。
PINK1是一種粒線體上的膜蛋白,PINK1基因的突變已被證實會造成隱性遺傳的早發性巴金森氏症。在過去的文獻中指出,PINK1可能具有神經保護的功能,然而,PINK1的明確作用,目前仍在研究當中。
在本篇論文中,我們欲探討在蛋白酶體受到抑制的情況下,PINK1的突變對於神經細胞的影響及調控。因此,我們利用人類神經細胞瘤SH-SY5Y細胞株,使其表現PINK1基因G309D變異,並外給蛋白酶體抑制劑MG132。
在研究中,我們發現在給予MG132 (1 μM) 24小時後,會誘導抗氧化酵素HO-1及SOD2在神經細胞的表現量。然而,此現象在帶有PINK1G309D基因變異的神經細胞中,卻受到了抑制。為了進一步研究此情形背後的調控機轉,我們接著探討了調控抗氧化酵素表現的重要轉錄因子-Nrf2,是否同樣會受到PINK1G309D變異影響。研究結果顯示,MG132確實會誘導Nrf2在神經細胞內的mRNA及蛋白合成量;且藉由西方墨點法分析核內蛋白、以及透過免疫螢光染色實驗,我們更進一步觀察到Nrf2表現量除了被誘導而增加外,外給MG132會促進Nrf2轉移到細胞核內,而上述情形皆同樣受到PINK1G309D基因變異而抑制。此外,MG132誘導HO-1表現的作用會被p38-MAPK抑制劑、PI3K/Akt抑制劑、及自由基清除劑所拮抗;我們也觀察到外給MG132會促進細胞中p38-MAPK的磷酸化、而PINK1G309D變異則同樣會抑制此現象。最後,我們發現PINK1G309D的基因變異會加劇MG132所導致的神經死亡。
總結以上結果,本篇研究指出在蛋白酶體功能異常的情況下,PINK1的基因變異會損害PINK1原有的神經保護作用,顯示這可能為巴金森氏症相關基因PINK1的致病機轉之ㄧ。
zh_TW
dc.description.abstractParkinson’s disease (PD), a chronic progressive movement disorder, is one of the most common neurodegenerative diseases. It is characterized by prominent loss of dopaminergic neurons in the substantia nigra pars compacta. No treatment is available to suppress the progression of neuron death, and the current medications only provide symptomatic relief. Although the etiology of PD is still not fully clarified, mitochondrial dysfunction, oxidative stress, ubiquitin proteasome system (UPS) impairment and abnormal protein accumulation have been proposed to play a major part in the pathogenesis of PD. PTEN-induced putative kinase 1 (PINK1) is a mitochondrial membrane integral protein. Mutations in PINK1 gene have been identified to cause early-onset autosomal recessive familial PD. Previous studies have suggested that PINK1 may provide a neuroprotective effect. However, the precise function of PINK1 still remains unclear. Here, we have addressed the question whether mutation of PINK1 affects cellular stress response to proteasome inhibition. To evaluate the issue, SH-SY5Y neuronal cells expressing PINK1 G309D mutant were challenged with MG132 (Z-Leu-Leu-Leu-al), the peptide aldehyde proteasome inhibitor. It was found that treatment with 1 μM MG132 for 24 h significantly induced the expression of the antioxidants, HO-1 and SOD2 in control SH-SY5Y cells. However, the antioxidants induction in response to proteasome inhibition was impaired by the expression of recombinant PINK1 G309D mutation. To elucidate the underlying mechanisms for the induction of antioxidative enzymes by proteasome inhibition, we further examined the influence of PINK1 G309D mutation on Nrf2, the critical factor in the regulation of inducible expression of antioxidants. It was demonstrated that MG132 induced the expression of Nrf2 both on the protein and mRNA levels, and the effect was also abrogated by the PINK1 G309D mutation. By using nucleus fraction and Immunofluorescent staining, it was observed that Nrf2 accumulated in the nucleus after proteasome inhibition, which was reduced by the PINK1 G309D mutation. In addition, the MG132-induced HO-1 induction was Akt- and p38 MAPK-dependent, and was inhibited by the application of the free radical scavenger, N-acetyl-L-cysteine (NAC). The phosphorylation of p38 MAPK following treatment of MG132 was inhibited in cells expressing the PINK1 G309D mutant. We also found that the MG132-induced neuronal death was enhanced by PINK1 G309D mutation. These results reveal a novel pathway by which the G309D mutation impairs the neuroprotective function of PINK1 under the stress of proteasome inhibition, which may be related to the pathogenesis of Parkinson’s disease.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:26:45Z (GMT). No. of bitstreams: 1
ntu-102-R00443012-1.pdf: 2375728 bytes, checksum: ecb43f069d24373bd09b58dabba794bc (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAbbreviations ………………………………………………….. V
摘要 …………………………………………………………….. VII
Abstract ………………………………………………………… IX
Chapter 1 Introduction ………………………………………… 1
1-1. Parkinson’s disease (PD) ………………… 1
1-2. PINK1 (PTEN-induced putative kinase 1) ………………… 2
1-3. Oxidative stress and antioxidant enzymes ………………… 5
1-4. Ubiquitin-proteasome system (UPS) ………………… 6
Chapter 2 Materials and Methods …………………………….. 16
Chapter 3 Results ……………………………………………….. 23
3-1. Induction of HO-1 and SOD2 expression following proteasome inhibition by MG132 ……………………………………... 23
3-2. Influence of PINK1 G309D mutation on proteasome inhibition–induced heme oxygenase production ……………… 24
3-3. Influence of PINK1 G309D mutation on proteasome inhibition–induced superoxide dismutase production …………. 25
3-4. Effect of PINK1 G309D mutation on other antioxidant enzymes following proteasome inhibition ……………………………. 26
3-5. Influence of PINK1 G309D mutation on Nrf2-ARE pathway after proteasome inhibition ……………………………………… 27
3-6. The signaling pathways involved in MG132-induced HO-1 expression ……………………………………………….. 29
3-7. Enhancement of MG132-induced neuronal death by PINK1 G309D mutation …………………………………………………. 30
Chapter 4 Discussion …………………………………………… 31
References ……………………………………………………….. 51
dc.language.isoen
dc.title探討巴金森氏症致病基因PINK1變異對於蛋白酶體抑制劑誘導之抗氧化酶表現之影響zh_TW
dc.titleInhibition of proteasome inhibitor-induced antioxidant enzymes by the mutation of Parkinson-related gene PINK1en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊榮森,楊春茂,林琬琬,李銘仁
dc.subject.keyword巴金森氏症,PINK1,蛋白&#37238,體抑制劑,HO-1,SOD2,Nrf2,zh_TW
dc.subject.keywordParkinson’s disease,PINK1,proteasome inhibitor,HO-1,SOD2,Nrf2,en
dc.relation.page60
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved