Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60688
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 葉秀慧 | |
dc.contributor.author | Yi-Tzu Chen | en |
dc.contributor.author | 陳怡孜 | zh_TW |
dc.date.accessioned | 2021-06-16T10:26:08Z | - |
dc.date.available | 2023-08-31 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | 參考文獻
1. Bouchard, M.J. and S. Navas-Martin, Hepatitis B and C virus hepatocarcinogenesis: lessons learned and future challenges. Cancer Lett, 2011. 305(2): p. 123-43. 2. Bartosch, B., Hepatitis B and C viruses and hepatocellular carcinoma. Viruses, 2010. 2(8): p. 1504-9. 3. Arzumanyan, A., H.M. Reis, and M.A. Feitelson, Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer, 2013. 13(2): p. 123-35. 4. Sherman, M., Risk of hepatocellular carcinoma in hepatitis B and prevention through treatment. Cleve Clin J Med, 2009. 76 Suppl 3: p. S6-9. 5. Merican, I., et al., Chronic hepatitis B virus infection in Asian countries. J Gastroenterol Hepatol, 2000. 15(12): p. 1356-61. 6. Chen, C.J., L.Y. Wang, and M.W. Yu, Epidemiology of hepatitis B virus infection in the Asia-Pacific region. J Gastroenterol Hepatol, 2000. 15 Suppl: p. E3-6. 7. Guerrieri, F., et al., Molecular Mechanisms of HBV-Associated Hepatocarcinogenesis. Semin Liver Dis, 2013. 33(2): p. 147-56. 8. Venook, A.P., et al., The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist, 2010. 15 Suppl 4: p. 5-13. 9. Nusslein-Volhard, C. and E. Wieschaus, Mutations affecting segment number and polarity in Drosophila. Nature, 1980. 287(5785): p. 795-801. 10. McMahon, A.P. and R.T. Moon, Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell, 1989. 58(6): p. 1075-84. 11. Rudloff, S. and R. Kemler, Differential requirements for beta-catenin during mouse development. Development, 2012. 139(20): p. 3711-21. 12. Katoh, M., Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev, 2007. 3(1): p. 30-8. 13. Li, V.S., et al., Wnt signaling through inhibition of beta-catenin degradation in an intact Axin1 complex. Cell, 2012. 149(6): p. 1245-56. 14. Clevers, H. and R. Nusse, Wnt/beta-catenin signaling and disease. Cell, 2012. 149(6): p. 1192-205. 15. Wong, C.M., S.T. Fan, and I.O. Ng, beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer, 2001. 92(1): p. 136-45. 16. Miyoshi, Y., et al., Activation of the beta-catenin gene in primary hepatocellular carcinomas by somatic alterations involving exon 3. Cancer Res, 1998. 58(12): p. 2524-7. 17. de La Coste, A., et al., Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8847-51. 18. Martensson, A., et al., Beta-catenin expression in relation to genetic instability and prognosis in colorectal cancer. Oncol Rep, 2007. 17(2): p. 447-52. 19. Wanitsuwan, W., et al., Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers. World J Gastroenterol, 2008. 14(39): p. 6052-9. 20. Elzagheid, A., et al., Nuclear beta-catenin expression as a prognostic factor in advanced colorectal carcinoma. World J Gastroenterol, 2008. 14(24): p. 3866-71. 21. Radtke, F. and H. Clevers, Self-renewal and cancer of the gut: two sides of a coin. Science, 2005. 307(5717): p. 1904-9. 22. Giles, R.H., J.H. van Es, and H. Clevers, Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta, 2003. 1653(1): p. 1-24. 23. White, B.D., A.J. Chien, and D.W. Dawson, Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology, 2012. 142(2): p. 219-32. 24. Nhieu, J.T., et al., Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol, 1999. 155(3): p. 703-10. 25. Tien, L.T., et al., Expression of beta-catenin in hepatocellular carcinoma. World J Gastroenterol, 2005. 11(16): p. 2398-401. 26. Kim, Y.D., et al., Genetic alterations of Wnt signaling pathway-associated genes in hepatocellular carcinoma. J Gastroenterol Hepatol, 2008. 23(1): p. 110-8. 27. Guichard, C., et al., Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet, 2012. 44(6): p. 694-8. 28. Inagawa, S., et al., Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res, 2002. 8(2): p. 450-6. 29. Farber, E., Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3'-methyl-4-dimethylaminoazobenzene. Cancer Res, 1956. 16(2): p. 142-8. 30. Yang, W., et al., Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res, 2008. 68(11): p. 4287-95. 31. Thompson, M.D., et al., Disparate cellular basis of improved liver repair in beta-catenin-overexpressing mice after long-term exposure to 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Am J Pathol, 2010. 177(4): p. 1812-22. 32. Tan, X., et al., Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology, 2006. 131(5): p. 1561-72. 33. Williams, J.M., et al., The role of the Wnt family of secreted proteins in rat oval 'stem' cell-based liver regeneration: Wnt1 drives differentiation. Am J Pathol, 2010. 176(6): p. 2732-42. 34. Lade, A.G. and S.P. Monga, Beta-catenin signaling in hepatic development and progenitors: which way does the WNT blow? Dev Dyn, 2011. 240(3): p. 486-500. 35. Roskams, T., Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene, 2006. 25(27): p. 3818-22. 36. Lee, J.S., et al., A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med, 2006. 12(4): p. 410-6. 37. Roskams, T., et al., Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol, 1998. 29(3): p. 455-63. 38. Sell, S. and H.L. Leffert, Liver cancer stem cells. J Clin Oncol, 2008. 26(17): p. 2800-5. 39. Wu, Y. and P.Y. Wu, CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev, 2009. 18(8): p. 1127-34. 40. Yamashita, T., et al., EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology, 2009. 136(3): p. 1012-24. 41. Lin, W.R., et al., The histogenesis of regenerative nodules in human liver cirrhosis. Hepatology, 2010. 51(3): p. 1017-26. 42. Yamashita, T., et al., Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res, 2007. 67(22): p. 10831-9. 43. Lu, T.Y., et al., Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem, 2010. 285(12): p. 8719-32. 44. Saldanha, G., et al., Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol, 2004. 151(1): p. 157-64. 45. Harada, N., et al., Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res, 2002. 62(7): p. 1971-7. 46. Nejak-Bowen, K.N., et al., Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant beta-catenin. Hepatology, 2010. 51(5): p. 1603-13. 47. Cadoret, A., et al., Hepatomegaly in transgenic mice expressing an oncogenic form of beta-catenin. Cancer Res, 2001. 61(8): p. 3245-9. 48. Harada, N., et al., Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res, 2004. 64(1): p. 48-54. 49. Huelsken, J., et al., Requirement for beta-catenin in anterior-posterior axis formation in mice. J Cell Biol, 2000. 148(3): p. 567-78. 50. Haegel, H., et al., Lack of beta-catenin affects mouse development at gastrulation. Development, 1995. 121(11): p. 3529-37. 51. van Amerongen, R. and A. Berns, Knockout mouse models to study Wnt signal transduction. Trends Genet, 2006. 22(12): p. 678-89. 52. Tan, X., et al., Beta-catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology, 2008. 47(5): p. 1667-79. 53. Sekine, S., et al., Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology, 2006. 43(4): p. 817-25. 54. Rignall, B., et al., Tumor formation in liver of conditional beta-catenin-deficient mice exposed to a diethylnitrosamine/phenobarbital tumor promotion regimen. Carcinogenesis, 2011. 32(1): p. 52-7. 55. Zhang, X.F., et al., Conditional beta-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor alpha/phosphoinositide 3-kinase signaling. Hepatology, 2010. 52(3): p. 954-65. 56. Macdonald, R.A., 'Lifespan' of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch Intern Med, 1961. 107: p. 335-43. 57. Ireland, H., et al., Inducible Cre-mediated control of gene expression in the murine gastrointestinal tract: effect of loss of beta-catenin. Gastroenterology, 2004. 126(5): p. 1236-46. 58. Wang, E.Y., et al., Depletion of beta-catenin from mature hepatocytes of mice promotes expansion of hepatic progenitor cells and tumor development. Proc Natl Acad Sci U S A, 2011. 108(45): p. 18384-9. 59. Alison, M.R., S. Islam, and S. Lim, Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol, 2009. 217(2): p. 282-98. 60. Hsu, H.C., et al., Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol, 2000. 157(3): p. 763-70. 61. Wu, B.K., et al., Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochem Biophys Res Commun, 2006. 340(3): p. 916-28. 62. Cadoret, A., et al., New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene, 2002. 21(54): p. 8293-301. 63. Benhamouche, S., et al., Apc tumor suppressor gene is the 'zonation-keeper' of mouse liver. Dev Cell, 2006. 10(6): p. 759-70. 64. Krizhanovsky, V., et al., Senescence of activated stellate cells limits liver fibrosis. Cell, 2008. 134(4): p. 657-67. 65. Su, F. and R.J. Schneider, Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc Natl Acad Sci U S A, 1997. 94(16): p. 8744-9. 66. Abu-Qare, A.W. and M.B. Abou-Donia, Biomarkers of apoptosis: release of cytochrome c, activation of caspase-3, induction of 8-hydroxy-2'-deoxyguanosine, increased 3-nitrotyrosine, and alteration of p53 gene. J Toxicol Environ Health B Crit Rev, 2001. 4(3): p. 313-32. 67. Zhou, W., et al., Fatty acid synthase inhibition triggers apoptosis during S phase in human cancer cells. Cancer Res, 2003. 63(21): p. 7330-7. 68. Boulter, L., et al., Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med, 2012. 18(4): p. 572-9. 69. Rodier, F. and J. Campisi, Four faces of cellular senescence. J Cell Biol, 2011. 192(4): p. 547-56. 70. Zhong, Z., et al., Lrp5 and Lrp6 play compensatory roles in mouse intestinal development. J Cell Biochem, 2012. 113(1): p. 31-8. 71. Niehrs, C., The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol, 2012. 13(12): p. 767-79. 72. Liu, G., et al., A novel mechanism for Wnt activation of canonical signaling through the LRP6 receptor. Mol Cell Biol, 2003. 23(16): p. 5825-35. 73. Mao, B., et al., LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 2001. 411(6835): p. 321-5. 74. Naito, A.T., et al., Complement C1q activates canonical Wnt signaling and promotes aging-related phenotypes. Cell, 2012. 149(6): p. 1298-313. 75. Jho, E.H., et al., Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 2002. 22(4): p. 1172-83. 76. Libbrecht, L., et al., Deep intralobular extension of human hepatic 'progenitor cells' correlates with parenchymal inflammation in chronic viral hepatitis: can 'progenitor cells' migrate? J Pathol, 2000. 192(3): p. 373-8. 77. Knight, B., et al., Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver progenitor (oval) cell response to chronic liver injury. Immunol Cell Biol, 2005. 83(4): p. 364-74. 78. Matthews, V.B. and G.C. Yeoh, Liver stem cells. IUBMB Life, 2005. 57(8): p. 549-53. 79. Tsutsui, H., et al., Cytokine-induced inflammatory liver injuries. Curr Mol Med, 2003. 3(6): p. 545-59. 80. Calabrese, F., et al., Parenchymal transforming growth factor beta-1: its type II receptor and Smad signaling pathway correlate with inflammation and fibrosis in chronic liver disease of viral etiology. J Gastroenterol Hepatol, 2003. 18(11): p. 1302-8. 81. Ringelhan, M., M. Heikenwalder, and U. Protzer, Direct effects of hepatitis B virus-encoded proteins and chronic infection in liver cancer development. Dig Dis, 2013. 31(1): p. 138-51. 82. Wang, E., Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res, 1995. 55(11): p. 2284-92. 83. Hampel, B., et al., Apoptosis resistance of senescent human fibroblasts is correlated with the absence of nuclear IGFBP-3. Aging Cell, 2005. 4(6): p. 325-30. 84. Itahana, K., et al., Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol, 2003. 23(1): p. 389-401. 85. Kong, Y., et al., Regulation of senescence in cancer and aging. J Aging Res, 2011. 2011: p. 963172. 86. Forgues, M., et al., Involvement of Crm1 in hepatitis B virus X protein-induced aberrant centriole replication and abnormal mitotic spindles. Mol Cell Biol, 2003. 23(15): p. 5282-92. 87. Kawai, H., et al., Quantitative evaluation of genomic instability as a possible predictor for development of hepatocellular carcinoma: comparison of loss of heterozygosity and replication error. Hepatology, 2000. 31(6): p. 1246-50. 88. Wiemann, S.U., et al., Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J, 2002. 16(9): p. 935-42. 89. Plentz, R.R., et al., Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology, 2007. 45(4): p. 968-76. 90. Fujimoto, A., et al., Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet, 2012. 44(7): p. 760-4. 91. Kojima, H., et al., Telomerase activity and telomere length in hepatocellular carcinoma and chronic liver disease. Gastroenterology, 1997. 112(2): p. 493-500. 92. Ozturk, M., et al., Senescence and immortality in hepatocellular carcinoma. Cancer Lett, 2009. 286(1): p. 103-13. 93. Collado, M., et al., Tumour biology: senescence in premalignant tumours. Nature, 2005. 436(7051): p. 642. 94. Benn, J. and R.J. Schneider, Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A, 1994. 91(22): p. 10350-4. 95. Chung, T.W., Y.C. Lee, and C.H. Kim, Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: involvement of invasive potential. FASEB J, 2004. 18(10): p. 1123-5. 96. Tarn, C., et al., Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem, 2001. 276(37): p. 34671-80. 97. Huang, J., et al., Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology, 2010. 52(1): p. 60-70. 98. Wang, X.W., et al., Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A, 1994. 91(6): p. 2230-4. 99. Zhao, J., et al., Epigenetic silence of ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region- containing protein 1 (ASPP1) and ASPP2 genes promotes tumor growth in hepatitis B virus-positive hepatocellular carcinoma. Hepatology, 2010. 51(1): p. 142-53. 100. Park, S.H., et al., Hepatitis B virus X protein overcomes all-trans retinoic acid-induced cellular senescence by downregulating levels of p16 and p21 via DNA methylation. J Gen Virol, 2011. 92(Pt 6): p. 1309-17. 101. Zender, L., et al., An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell, 2008. 135(5): p. 852-64. 102. Laurent-Puig, P., et al., Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology, 2001. 120(7): p. 1763-73. 103. Fatima, S., et al., Dickkopf 4 (DKK4) acts on Wnt/beta-catenin pathway by influencing beta-catenin in hepatocellular carcinoma. Oncogene, 2012. 31(38): p. 4233-44. 104. Hu, J., et al., Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res, 2009. 69(17): p. 6951-9. 105. Shih, Y.L., et al., SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer, 2007. 121(5): p. 1028-35. 106. Yu, B., et al., Elevated expression of DKK1 is associated with cytoplasmic/nuclear beta-catenin accumulation and poor prognosis in hepatocellular carcinomas. J Hepatol, 2009. 50(5): p. 948-57. 107. Li, Y., et al., Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation. PLoS One, 2010. 5(6): p. e11014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60688 | - |
dc.description.abstract | Wnt/β-catenin的訊息傳遞在超過50∼70%的肝癌中有不正常的高量表現,其中有部份是因為β-catenin產生活化性突變而導致。文獻也指出,在C型肝炎相關肝癌中β-catenin產生突變的機率比B型肝炎相關肝癌還要高,這暗示著可能有一個特殊的機制,可使B型肝炎相關肝癌不藉由β-catenin的突變就可以啟動Wnt/β-catenin的訊息傳遞。於是我們有興趣藉由肝臟特定性β-catenin剔除與HBx轉殖基因 (HBx;Alb-Cre;Ctnnb1flx/flx mice)的小鼠模式來研究此一議題。
本實驗室先前的研究指出,肝臟特定性β-catenin剔除小鼠(Alb-Cre;Ctnnb1flx/flx mice),長期追蹤後(大於16個月),會自然產生肝腫瘤。而在肝臟特定性β-catenin剔除與HBx轉殖基因的小鼠模式中,因為HBx蛋白的存在,會使腫瘤生成的時間提早,從第七到第八個月開始就會產生肝腫瘤。 我們首先釐清Wnt/β-catenin 訊息傳遞路徑在本實驗室小鼠模式所產生的肝腫瘤中是否活化。結果顯示,在肝臟特定性β-catenin剔除小鼠的肝腫瘤會藉由β-catenin的突變來活化Wnt/β-catenin 訊息傳遞路徑;在肝臟特定性β-catenin剔除與HBx轉殖基因小鼠的肝腫瘤中也發現有部分的Wnt/β-catenin 訊息傳遞路徑是被活化的,但這些腫瘤中的β-catenin都沒有發生突變。為了進一步探討是什麼樣的機制去活化這群腫瘤中的Wnt/β-catenin 訊息傳遞路徑,我們將目標放在發炎反應所造成的微環境中。我們發現在肝臟特定性β-catenin剔除與HBx轉殖基因小鼠的肝臟,在第四週開始會發生細胞衰老(senescence)現象,使β-catenin被剔除的肝細胞死亡,引起發炎反應。和發炎反應相關的因子中,補體C1q最近被證實可參與活化Wnt/β-catenin 訊息傳遞路徑,而在肝臟特定性β-catenin剔除與HBx轉殖基因小鼠發炎的肝臟微環境中也觀察到C1q的表現量有增加,這可能與刺激肝臟前驅細胞活化增殖與肝癌的形成有關。在免疫組織化學染色的結果發現,C1q與分泌C1q的巨噬細胞會表現在鄰近肝臟前驅細胞與肝腫瘤的附近,顯示著C1q極有可能參與調控這些細胞的Wnt/β-catenin 訊息傳遞路徑。 最後我們試著去驗證C1q相關的機制是否也存在於人類肝癌中。結果發現在85%的人類肝癌中,其非腫瘤部分比起腫瘤區的C1q表現量有增加的趨勢,其中有部分檢體的Wnt/β-catenin訊息傳遞路徑下游基因Axin2的表現也有增加。這初步的結果支持著在發炎微環境中的C1q,可能是與活化人類肝癌中Wnt/β-catenin 訊息傳遞路徑相關,更詳細的機制則有待進一步的研究來驗證。 | zh_TW |
dc.description.abstract | It has been well documented that the Wnt/β-catenin pathway is activated in 50-70% of human hepatocellular carcinoma(HCC), some of which is attributed by the somatic mutations. It was noted that the somatic mutations occurs less frequently in HBV-related HCC than the HCV- related HCC, suggesting a possibility that some specific mechanism might contribute to the activation of Wnt/β-catenin pathway in HBV- related HCC. The current study proposed to address this possibility by using the HBx induced HCC mouse model, with conditional β-catenin knockout mice in crossing with HBx transgenic mice (HBx;Alb-Cre;Ctnnb1flx/flx mice). In our previous study, liver cancers occur spontaneously in the β-catenin knockout mice (Alb-Cre;Ctnnb1flx/flx mice) during long term follow-up (at the age >16 months old). The presence of HBx can accelerate the carcinogenesis, with the liver tumors occurred earlier at the age 7~8 months old.
We have first tried to examine if the Wnt/β-catenin pathway is activated in the liver tumors of this animal model. The results showed that most of the liver tumors in β-catenin knockout mice are attributed by the somatic activating mutations. However, although the Wnt/β-catenin pathway is also activated in a subgroup of β-catenin knockout with HBx transgenic mice, none of which are attributed by activating mutations. Aiming to delineate the mechanisms for activation of Wnt pathway in this subgroup of HCC, we focused on the candidate factors in the inflammatory microenvironment for this activation event. We found that this inflammatory microenvironment is predisposed by senescence of the β-catenin deficient hepatocytes, starting from 4 weeks of age. A novel factor of C1q has recently been identified with ability to activate Wnt pathway, which intriguingly is significantly elevated in the inflammatory niche of thisβ-catenin knockout with HBx transgenic mice and is well correlated with the expansion of the HPCs and carcinogenesis. The results from extensive IHC staining further revealed the C1q positive cells and the C1q secreting macrophages in close proximity of the HPCs and liver cancers, supporting the possible involvement of this complement factor in regulating Wnt pathway in these cells. Finally, we have also tried to examine if this mechanism could also occur in human HCC. The results showed that the expression of C1q is elevated in the non-tumorous liver tissues adjacent to HCC in 85% of HCC patients, some of which correlate with the increase of Axin, a target gene of Wnt pathway, in HCC. The results thus preliminarily supported the C1q as one putative factor in the inflammatory microenvironment associated with activating the Wnt pathway in human HCC, which awaits further validation studies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:26:08Z (GMT). No. of bitstreams: 1 ntu-102-R00445103-1.pdf: 6231966 bytes, checksum: 668423b596619a2f4b56c31f9749f7e6 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 目錄
口試委員會審定書 i 致謝 ii 中文摘要 iii 英文摘要 v 序論 3 1. 肝細胞癌流行病學概述 3 2. Wnt/β-catenin訊息傳遞路徑與肝細胞癌 4 2.1. Wnt/β-catenin 訊息傳遞路徑簡介 4 2.2. 脫離常軌的Wnt/β-catenin 訊息傳遞路徑與肝細胞癌 5 2.3. 肝臟前驅細胞與Wnt/β-catenin 訊息傳遞路徑的關係 6 2.4. 前驅細胞與肝細胞癌的關係 7 3. 探討肝臟Wnt/β-catenin 訊息傳遞路徑功能相關的動物模式 8 3.1. 肝臟特定性β-catenin 轉殖基因老鼠 8 3.2. 肝臟特定性β-catenin 基因剔除小鼠 8 3.3. 本實驗室Alb-Cre肝臟特定性β-catenin基因剔除老鼠模式的發現 9 研究目的 11 材料與方法 13 1. 實驗小鼠 13 1.1. Alb-Cre肝臟特定性β-catenin基因剔除小鼠 13 1.2. Alb-HBx轉殖基因小鼠 13 1.3. Alb-Cre肝臟特定性β-catenin剔除與Alb-HBx轉殖基因小鼠 14 2. 人類肝細胞癌檢體 15 3. 免疫組織化學染色法 15 4. 蛋白質定量分析 16 5. SDS-PAGE蛋白質膠體電泳 16 6. 西方墨點法 16 7. Senescence associated β-galactosidase assay 17 8. 反轉錄定量聚合酵素連鎖反應 18 結果 20 1. β-catenin 基因剔除小鼠肝臟腫瘤的收集、分類與命名 20 2. Wnt/β-catenin 訊息傳遞路徑在本實驗室小鼠模式中是否活化 20 2.1. 西方墨點法的結果 21 2.2. 免疫組織化學染色法結果 22 3. 肝臟特定性β-catenin剔除與HBx轉殖基因小鼠肝細胞的更新機制 23 3.1. SA-βgal Assay的結果 23 3.2. 免疫組織化學染色p16結果 24 3.3. HBx與细胞凋亡 24 4. 補體C1q與Wnt/β-catenin 訊息傳遞路徑 25 4.1. C1q與肝臟特定性β-catenin剔除小鼠、肝臟特定性β-catenin剔除 與HBx轉殖基因小鼠肝細胞的補償性更新 26 4.2. C1q與肝臟特定性β-catenin剔除與HBx轉殖基因小鼠的 Low grade HCC 27 5. 在HBx轉殖基因小鼠模式的情況 27 5.1. 細胞衰老與HBx轉殖基因小鼠 27 5.2. C1q與HBx轉殖基因小鼠 27 5.3. HBx轉殖基因小鼠腫瘤的特性 28 6. 在人類B型肝炎相關肝細胞癌的情況 29 6.1. C1q的表現量在人類肝細胞癌中是否增加 29 6.2. C1q與肝細胞癌Wnt/β-catenin訊息傳遞路徑活化之相關性 29 討論 32 1. 發炎反應導致前驅細胞增生 32 2. 細胞衰老與肝細胞癌 33 2.1. Alb-Cre肝臟特定性β-catenin剔除與Alb-HBx轉殖基因小鼠模式 與細胞衰老 33 2.2. 細胞衰老和B型肝炎病毒與肝細胞癌 33 3. β-catenin突變與肝細胞癌的預後 34 4. C1q與Wnt/β-catenin訊息傳遞路徑和肝細胞癌 35 5. C1q調控活化Wnt/β-catenin訊息傳遞路徑 36 6. C1q相關的機制是否存在於Alb-HBx 轉殖基因小鼠中 37 7. C1q相關的機制是否存在於人類B型肝炎相關肝細胞癌中 38 圖表附錄 39 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | B型肝炎病毒X蛋白活化肝癌中Wnt/β-catenin訊息傳遞路徑之研究 | zh_TW |
dc.title | Activation of Wnt/β-catenin pathway in HBx induced liver cancers | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳培哲,沈家寧,鄭永銘 | |
dc.subject.keyword | Wnt/β-catenin訊息傳遞路徑,B型肝炎,X蛋白,肝癌, | zh_TW |
dc.subject.keyword | Wnt/β-catenin pathway,HBx,liver cancers, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
Appears in Collections: | 微生物學科所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-102-1.pdf Restricted Access | 6.09 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.