請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60681
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周俊廷 | |
dc.contributor.author | Zhu-Jun Yang | en |
dc.contributor.author | 楊筑鈞 | zh_TW |
dc.date.accessioned | 2021-06-16T10:25:53Z | - |
dc.date.available | 2016-08-20 | |
dc.date.copyright | 2013-08-20 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | [1] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to-device
communication as an underlay to lte-advanced networks,” Communications Mag- azine, IEEE, vol. 47, no. 12, pp. 42–49, 2009. [2] K. Doppler, M. Rinne, P. Janis, C. Ribeiro, and K. Hugl, “Device-to-device communications; functional prospects for lte-advanced networks,” in Communi- cations Workshops, 2009. ICC Workshops 2009. IEEE International Conference on, pp. 1–6, 2009. [3] B.-G. C. Jaheon Gu, Sueng Jae Bae and M. Y. Chung, “Mode selection scheme considering transmission power for improving performance of device-to-device communication in cellular networks,” in ICUIMC ’12: Proceedings of the 6th International Conference on Ubiquitous Information Management and Commu- nication, ACM, 2012. [4] K. Doppler, C.-H. Yu, C. Ribeiro, and P. Janis, “Mode selection for device-to- device communication underlaying an lte-advanced network,” in Wireless Com- munications and Networking Conference (WCNC), 2010 IEEE, pp. 1–6, 2010. [5] B. Wang, L. Chen, X. Chen, X. Zhang, and D. Yang, “Resource allocation optimization for device-to-device communication underlaying cellular networks,” in Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, pp. 1–6, 2011. [6] H. Min, J. Lee, S. Park, and D. Hong, “Capacity enhancement using an inter- ference limited area for device-to-device uplink underlaying cellular networks,”Wireless Communications, IEEE Transactions on, vol. 10, no. 12, pp. 3995–4000, 2011. [7] H. Min, W. Seo, J. Lee, S. Park, and D. Hong, “Reliability improvement using receive mode selection in the device-to-device uplink period underlaying cellular networks,” Wireless Communications, IEEE Transactions on, vol. 10, no. 2, pp. 413–418, 2011. [8] J. Gu, S. J. Bae, B.-G. Choi, and M. Y. Chung, “Dynamic power control mecha- nism for interference coordination of device-to-device communication in cellular networks,” in Ubiquitous and Future Networks (ICUFN), 2011 Third Interna- tional Conference on, pp. 71–75, 2011. [9] S. Xu, H. Wang, T. Chen, Q. Huang, and T. Peng, “Effective interference can- cellation scheme for device-to-device communication underlaying cellular net- works,” in Vehicular Technology Conference Fall (VTC 2010-Fall), 2010 IEEE 72nd, pp. 1–5, 2010. [10] T. Peng, Q. Lu, H. Wang, S. Xu, and W. Wang, “Interference avoidance mech- anisms in the hybrid cellular and device-to-device systems,” in Personal, Indoor and Mobile Radio Communications, 2009 IEEE 20th International Symposium on, pp. 617–621, 2009. [11] X. Wu, S. Tavildar, S. Shakkottai, T. Richardson, J. Li, R. Laroia, and A. Jovi- cic, “Flashlinq: A synchronous distributed scheduler for peer-to-peer ad hoc networks,” in Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on, pp. 514–521, 2010. [12] 3GPP, 3GPP TS 32240: ”Telecommunication management; Charging manage- ment; Charging architecture and principles”. 13] 3GPP TS 32251: ”Telecommunication management; Charging management; Packet Switched (PS) domain charging”. [14] R. W. Costas Courcoubetis, Pricing Communication Networks: Economics, Technology and Modelling. Wiley, 1 ed., April 2003. [15] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Mikl’os, and Z. Tur’anyi, “Design aspects of network assisted device-to-device communica- tions,” Communications Magazine, IEEE, vol. 50, no. 3, pp. 170–177, 2012. [16] “Bluetooth http://www.bluetooth.com.” [17] “Wi-fi alliance http://www.wi-fi.org.” [18] M. J. Mcglynn and S. A. Borbash, “Birthday protocols for low energy deploy- ment and flexible neighbor discovery in ad hoc wireless networks,” in MobiHoc ’01: Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, pp. 137–145, ACM, 2001. [19] S. Vasudevan, J. Kurose, and D. Towsley, “On neighbor discovery in wireless networks with directional antennas,” in INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 4, pp. 2502–2512 vol. 4, 2005. [20] S. Vasudevan, D. Towsley, D. Goeckel, and R. Khalili, “Neighbor discovery in wireless networks and the coupon collector’s problem,” in Proceedings of the 15th annual international conference on Mobile computing and networking, MobiCom ’09, pp. 181–192, ACM, 2009. [21] L. You, Z. Yuan, P. Yang, and G. Chen, “Aloha-like neighbor discovery in low- duty-cycle wireless sensor networks,” in Wireless Communications and Network- ing Conference (WCNC), 2011 IEEE, pp. 749–754, 2011. [22] P. Dutta and D. Culler, “Practical asynchronous neighbor discovery and ren- dezvous for mobile sensing applications,” in SenSys ’08: Proceedings of the 6th ACM conference on Embedded network sensor systems, pp. 71–84, ACM, 2008. [23] A. Kandhalu, K. Lakshmanan, and R. R. Rajkumar, “U-connect: a low-latency energy-efficient asynchronous neighbor discovery protocol,” in Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN ’10, pp. 350–361, 2010. [24] M. Corson, R. Laroia, J. Li, V. Park, T. Richardson, and G. Tsirtsis, “Toward proximity-aware internetworking,” Wireless Communications, IEEE, vol. 17, no. 6, pp. 26–33, 2010. [25] F. Baccelli, N. Khude, R. Laroia, J. Li, T. Richardson, S. Shakkottai, S. Tavildar, and X. Wu, “On the design of device-to-device autonomous discovery,” in Com- munication Systems and Networks (COMSNETS), 2012 Fourth International Conference on, pp. 1–9, 2012. [26] 3GPP, 3GPP TS 36211: ”Evolved Universal Terrestrial Radio Access (E- UTRA); Physical Channels and Modulation”. [27] 3GPP, 3GPP TS 36321: ”Evolved Universal Terrestrial Radio Access (E- UTRA); Medium Access Control (MAC) protocol specification”. [28] 3GPP, 3GPP TS 36213: ”Evolved Universal Terrestrial Radio Access (E-UTRA) Physical layer procedures”. [29] “Cisco visual networking index: Global mobile data traffic forecast update, 2012- 2017,” tech. rep., Cisco, 2013. [30] L. Tang, M. Li, M. A. Abu-Rgheff, and H. Wang, “Novel snr analysis for adap- tive modulation and coding in generalized ofdm and single carrier systems,”in Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, pp. 1384–1388, 2007. [31] “Smartphone usage behavior measurement report in taiwan,” tech. rep., In- sightXplorer Limited, 2013. [32] “Survey on ict use and digital opportunity in taiwan,” tech. rep., Research, Development and Evaluation Commission, Executive Yuan, 2011. [33] D. Moltchanov, “Distance distributions in random networks,” Ad Hoc Networks, vol. 10, no. 6, pp. 1146 – 1166, 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60681 | - |
dc.description.abstract | 隨著行動通訊裝置如智慧型手機與平板電腦的普及,現今人們可以隨時隨地上網以及使用各種應用程式。然而,現行的第三代行動通訊網路(3G)已經不足以應付龐大的高速傳輸資料需求。為了提供更高的流量以及更好的服務品質,第三代合作夥伴計畫(3GPP)提出了進階長期演進網路(LTE-A)做為第四代行動通訊網路(4G)的標準。
而裝置與裝置直接通訊(Device-to-device communication)是進階長期演進網路用來提升網路容量與無線資源使用效率的關鍵技術之一。由於資料流不需經過網路的基礎建設,因此使用裝置與裝置直接通訊來傳輸資料可以讓傳輸更有效率,進而提升整體的網路容量。除此之外,為來裝置與裝置直接通訊將有非常多的發展機會。舉例來說,適地性服務(Location-based services)以及社群應用(social proximity) 使用裝置與裝置直接通訊可以消耗較少的無線資源並且產生較小的延遲。雖然裝置與裝置直接通訊可以帶來許多益處,要在進階長期演進網路中實現裝置與裝置直接通訊仍然有相當多的挑戰。從營運商的角度來看,如果無法產生額外的收益,就不會吸引營運商實現裝置與裝置直接通訊。而從使用者裝置(User equipment)的角度出發,只有當使用者裝置能夠發現鄰近的裝置後才能夠實現裝置與裝置直接通訊。 因此,本研究從營運商與使用者裝置的角度出發,探討裝置與裝置直接通訊。首先,我們推導即用即付方案與吃到飽方案的需求函數,並且分析營運商的收益。由數值分析與模擬的結果都顯示,裝置與裝置直接通訊不但能增加近1/3的網路容量,更能為營運商帶來至多21%的額外營收。此結果能提供營運商很強烈的動機去實現裝置與裝置直接通訊。另一方面,我們提出一個隨機存取的裝置偵測協定讓使用者裝置得以偵測鄰近的其他裝置。此裝置偵測協定需要使用者裝置隨機傳輸發現訊號去宣告它的存在。為了讓裝置偵測使用的無線資源最小化,我們也提出了一個能夠根據裝置數目動態分配資源的演算法。由我們的數值分析與模擬結果顯示,我們的裝置偵測協定能夠只使用基地台1%的上傳資源去達到非常高的偵測成功機率(e.g., 99%)。 | zh_TW |
dc.description.abstract | With the prevalence of mobile devices such as smart phones and tablets, people can access the Internet and use various applications and services anytime, anywhere. However, the existing 3rd generation (3G) cellular technologies cannot support the large demand of high-speed transmission. To support higher throughput and better quality of service, long term evolution advanced (LTE-A) has been proposed by 3rd Generation Partnership Project (3GPP).
Device-to-device (D2D) communication is one of the key technologies in LTE-A for improving network capacity and resource utilization. With D2D communication, data transmission can be more efficient and thus the overall system capacity can be increased since the data does not go through the infrastructure. Furthermore, there are many opportunities for D2D communication. For example, location-based services and proximity social applications with D2D communication can use less resource and produce smaller latency. Although D2D can bring many benefits, there are still many challenges to implement D2D in LTE-A networks. From operators' perspective, D2D would not be an appealing technology if no additional revenue can be generated. From user equipments' perspective, D2D transmission can only be enabled if the UEs in the vicinity can be discovered. In this thesis, we consider D2D communication from both operator's and UEs' perspective. First, we derive the demand functions of pay-as-you-use and flat-rate plans, and analyze the revenue of an operator. Our numerical analysis and simulation results show that D2D not only increases nearly 1/3 of capacity but also brings up to 21% additional revenue for operators. The results provide operators with a strong incentive to implement D2D communication. Next, a random-access discovery protocol is proposed for UEs to discover other nearby UEs. The proposed protocol requires UEs to advertise their presence by random beacon transmission. In order to minimize resource consumption on discovery, an adaptive resource allocation algorithm based on the number of requesting D2D UEs is also proposed. Our numerical analysis and simulation results show that a very high discovery probability (e.g., 0.99) can be achieved by using only 1% of the eNB's uplink resources. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:25:53Z (GMT). No. of bitstreams: 1 ntu-102-R00942112-1.pdf: 1344696 bytes, checksum: f2e9c7ad34bcf7b61ff1dcb96463b7d7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction to LTE-A networks . . . . . . . . . . . . . . . . . . . . 2 1.2 New opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Challenges and objectives . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.1 Existing solutions for revenue analysis . . . . . . . . . . . . . 5 1.4.2 Existing solutions for device discovery . . . . . . . . . . . . . 6 1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CHAPTER 2 RESOURCE ALLOCATION AND SCHEDULING IN LTE-A NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Frame structure and resource grid . . . . . . . . . . . . . . . . . . . 9 2.2 Data transmission scheduling . . . . . . . . . . . . . . . . . . . . . . 10 2.3 PUSCH Frequency hopping . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 3 D2D COMMUNICATION IN LTE-A NETWORKS 13 3.1 Service flow of D2D communication . . . . . . . . . . . . . . . . . . 13 3.2 Usage scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Location-based services . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Social proximity . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 M2M communication . . . . . . . . . . . . . . . . . . . . . . 18 3.2.4 Public safety . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Essential functionalities . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.1 Device discovery . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.2 Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3.3 Session setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.4 Data transmission and charging . . . . . . . . . . . . . . . . 22 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CHAPTER 4 REVENUE GENERATION ANALYSIS . . . . . . . 24 4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.1.1 Problem scenarios . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1.2 Definition of parameters . . . . . . . . . . . . . . . . . . . . . 26 4.1.3 Demand functions . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.4 Assumption and constraint . . . . . . . . . . . . . . . . . . . 31 4.1.5 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 Analysis for pay-as-you-use case . . . . . . . . . . . . . . . . 43 4.2.3 Analysis for flat-rate case . . . . . . . . . . . . . . . . . . . . 46 4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3.1 Pay-as-you-use case . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.2 Flat-rate case . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 CHAPTER 5 DESIGN OF DEVICE DISCOVERY PROTOCOL . 56 5.1 Discovery procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.1.1 RB allocation by the eNB . . . . . . . . . . . . . . . . . . . . 57 5.1.2 Beacon transmission by UEs . . . . . . . . . . . . . . . . . . 57 5.2 Performance analysis and evaluation . . . . . . . . . . . . . . . . . . 58 5.2.1 Client-server service . . . . . . . . . . . . . . . . . . . . . . . 59 5.2.2 Peer-to-peer service . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.3.1 SINR Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3.2 Comparison with Existing Approaches . . . . . . . . . . . . . 64 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 CHAPTER 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 68 | |
dc.language.iso | en | |
dc.title | 在進階長期演進網路中實現裝置與裝置直接通訊 | zh_TW |
dc.title | Device-to-Device (D2D) Communication in LTE-A Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許獻聰,魏宏宇,林風 | |
dc.subject.keyword | 第四代行動通訊網路,進階長期演進技術,裝置與裝置直接通訊,營運商收益分析,裝置偵測協定,動態資源分配, | zh_TW |
dc.subject.keyword | 4G,LTE-A,Device-to-Device (D2D) communication,operator revenue analysis,discovery protocol,dynamic resource allocation, | en |
dc.relation.page | 73 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。