Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6067
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘子明(Tzu-Ming Pan)
dc.contributor.authorYi-Jun Chenen
dc.contributor.author陳奕均zh_TW
dc.date.accessioned2021-05-16T16:20:20Z-
dc.date.available2019-07-29
dc.date.available2021-05-16T16:20:20Z-
dc.date.copyright2014-07-29
dc.date.issued2013
dc.date.submitted2014-07-04
dc.identifier.citation台北市士林區健康服務中心。2013。台北。
肖培根。2002a。新編中藥志第二卷。化學工業出版社。北京市。648-653。
肖培根。2002b。新編中藥志第三卷。化學工業出版社。北京市。260-263。
梁佳玟、賴怡君及朱燕華。2004。中草藥對於促發炎細胞激素生成之影響。中醫藥雜誌。15: 293-304.
邱銘章、陳達夫、王培寧、白明奇、黃正平及花茂棽。2013。失智症(含輕度認知功能障礙 (mild cognitive impairment, MCI))流行病學調查及失智症照護研究計畫。台北。
徐國鈞及王强。2006。中草藥彩色圖譜。福建科学技朮出版社。福州市。540-541。
國家中醫藥管理局。1999。中華本草。上海科學技術出版社。上海。
國家藥典委員會。2010a。中華人民共和國藥典 一部。中國醫藥科技出版社。北京市。266-267
國家藥典委員會。2010b。中華人民共和國藥典 一部。中國醫藥科技出版社。北京市。343-344
國家藥典委員會。2009a。中華人民共和國藥典-中藥材顯為鑑別彩色圖鑑。人民衛生出版社。北京市。348-349
國家藥典委員會。2009b。中華人民共和國藥典-中藥材顯為鑑別彩色圖鑑。人民衛生出版社。北京市。435
陳文惠、陳佩儀、劉宜祝及羅吉方。2011。市售酸棗仁藥材之鑑別及其成分含量測定。食品藥物研究年報。2: 360-366
賈玉海。2001a。常用中藥八百味精要。學苑。北京市。125-126。
賈玉海。2001b。常用中藥八百味精要。學苑。北京市。445-446。
鄭承劍及秦路平。2007。積雪草化學成分和生物活性的研究。中西醫結合學報。5: 348-351。
劉景寬、戴志達、林瑞泰及賴秋蓮。2000。台灣失智症流行病學。應用心理研究。 7: 157-169。
蔡文豪。2011。雷公根與酸棗仁酒精萃取物於分化 PC12 細胞株中對類澱粉樣蛋白 β 胜肽產生神經毒性之保護。臺灣大學生化科技學系研究所碩士論文。台北。
Alexander, G. E., Chen, K., Pietrini, P., Rapoport, S. I. and Reiman, E. M. 2002. Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in Alzheimer's Disease treatment studies. Am J Psychiatry. 159: 738-745.
Alzheimer’s Disease International. 2009. World Alzheimer Report 2009.
Alzheimer’s Disease International. 2010. World Alzheimer Report 2010.
Alzheimer, A. 1907. Uber eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat Psych-gerichtl Med. 64: 146-148.
Arvin, B., Neville, L. F., Barone, F. C. and Feuerstein, G. Z. 1996. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev. 20: 445-452.
Awasthi, A., Matsunaga, Y. and Yamada, T. 2005. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol. 196: 282-289.
Behl, C., Davis, J. B., Lesley, R. and Schubert, D. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 77: 817-827.
Bitan, G., Kirkitadze, M. D., Lomakin, A., Vollers, S. S., Benedek, G. B. and Teplow, D. B. 2003. Amyloid beta-protein (Abeta) assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proc Natl Acad Sci U S A. 100: 330-335.
Blennow, K. 2004. Cerebrospinal fluid protein biomarkers for Alzheimer's disease. NeuroRx. 2: 213-225.
Blennow, K. and Hampel, H. 2003. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2: 605-613.
Butterfield, D. A. 1997. β-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Chem. Res. Toxicol. 10: 495-506.
Castellani, R. J., Lee, H. G., Zhu, X., Perry, G. and Smith, M. A. 2008. Alzheimer disease pathology as a host response. J Neuropathol Exp Neurol. 67: 523-531.
Cesarone, M. R., Laurora, G., De Sanctis, M. T. and Belcaro, G., 1992. Activity of Centella asiatica in venous insufficiency. Minerva Cardioangiol. 40: 137 – 143.
Cheng, C. L. and Koo, M. W., 2000. Effects of Centella asiatica on ethanol induced gastric mucosal lesions in rats. Life Sci. 67: 2647 – 2653.
Cheng, C. L., Guo, J. S., Luk, J. and Koo, M. W., 2004. The healing effects of Centella extract and asiaticoside on acetic acid induced gastric ulcers in rats. Life Sci. 74: 2237 - 2249.
Cho, D.H., Nakamura, T., Fang, J., Fang, J., Cieplak, P., Godzik, A. and Gu, Z., Lipton, S. A. 2009. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 324: 102-105.
Cho, K. H., 1981. Clinical experiences of madecassol (Centella asiatica) in the treatment of peptic ulcer. Korean J Gastroenterol. 13: 49 – 56.
Chong, Z. Z., Li, F. and Maiese, K. 2005. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol. 75: 207-246.
Chow, V. W., Mattson, M. P., Wong, P. C. and Gleichmann, M. 2010. An overview of APP processing enzymes and products. Neuromol Med. 12: 1-12.
Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I. and Selkoe, D. J. 1992. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 360: 672-674.
Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George, Hyslop, P. and Selkoe, D. J. 1997. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med. 3: 67-72.
Clementi, M. E., Marini. S., Coletta, M., Orsini, F., Giardina, B. and Misiti, F. 2005. Abeta(31-35) and Abeta(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: Role of the redox state of methionine-35. FEBS Lett. 579: 2913-2918.
Crook, R., Verkkoniemi, A., Perez-Tur, J., Mehta, N., Baker, M., Houlden, H., Farrer, M., Hutton, M., Lincoln, S., Hardy, J., Gwinn, K., Somer, M., Paetau, A., Kalimo, H., Ylikoski, R., Poyhonen, M., Kucera, S. and Haltia, M. 1998. A variant of Alzheimer's disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med. 4: 452-455.
Dawbarn, D. and Allen, S. J. 2008. Molecular and cellular neurobiology series: neurobiology of Alzheimer’s Disease. 3rd ed. New York. Oxford University Press.
De Strooper, B. and Annaert, W. 2000. Proteolytic processing and cell biological functions of the amyloid precursor protein. J Cell Sci. 113: 1857-1870.
Dhanasekaran, M., Holcomb, L. A., Hitt, A. R., Tharakan, B., Porter, J. W., Young, K. A. and Manyam, B. V. 2009. Centella asiatica extract selectively decreases amyloid beta levels in hippocampus of Alzheimer's disease animal model. Phytother Res. 23: 14-19.
Donkin, J. J., Stukas, S., Hirsch-Reinshagen, V., Namjoshi, D., Wilkinson, A., May, S., Chan, J., Fan, J., Collins, J. and Wellington, C. L. 2010. ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem. 285: 34144-34154.
Fang, X. S., Hao, J. F., Zhou, H. Y., Zhu, L. X., Wang, J. H. and Song, F. Q. 2010. Pharmacological studies on the sedative-hypnotic effect of Semen Ziziphi spinosae (Suanzaoren) and Radix et Rhizoma Salviae miltiorrhizae (Danshen) extracts and the synergistic effect of their combinations. Phytomedicine. 17: 75-80.
Folstein, M. E., Folstein, S. D. and McHugh, P. R.1975. Mini-mental state: a practical method for grading the cognitive state of patients for clinician. J Psychiatr Res. 12: 189-198.
Frank, B. and Gutpa, S. 2005. A review of antioxidants and Alzheimer's disease. Ann Clin Psych. 17: 269-286.
Fratiglioni, L., De Ronchi, D. and Aguero-Torres, H. 1999. Worldwide prevalence and incidence of dementia. Drugs Aging. 15: 365-375.
Furukawa, K., Barger, S. W., Blalock, E. M. and Mattson, M. P. 1996. Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature. 379: 74-78.
Gakhar-Koppole, N., Hundeshagen, P., Mandl, C., Weyer, S. W., Allinquant, B., Muller, U. and Ciccolini, F. 2008. Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth inneural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci. 28: 871-882.
Ganachari, M. S., Babu, V. and Katare. S., 2004. Neuropharmacology of an extract derived from Centella asiatica. Pharm Biol. 42: 246 – 252.
Ghosh, A. K., Kumaragurubaran, N., Hong, L., Kulkarni, S., Xu, X., Miller, H. B., Reddy, D. S., Weerasena, V., Turner, R., Chang, W., Koelsch, G. and Tang, J. 2008. Potent memapsin 2 (beta-secretase) inhibitors: design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorg Med Chem Lett. 18: 1031-1036.
Glenner, G. G. and Wong, C. W. 1984. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 120: 885-890.
Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N. and James, L. 1991. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 349: 704-706.
Goekoop, R., Scheltens, P., Barkhof, F. and Rombouts, S. A. 2006, Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation--a pharmacological fMRI study. Brain. 129: 141-157.
Gong, Y., Chang, L., Viola, K. L., Lacor, P. N., Lambert, M. P., Finch, C. E., Krafft, G. A. and Klein, W. L. 2003. Alzheimer's disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci. 100: 10417-10422.
Good, P. F., Werner, P., Hsu, A., Olanow, C. W. and Perl, D. P. 1996. Evidence of neuronal oxidative damage in Alzheimer's disease. Am J Pathol. 149: 21-28.
Guo, J. S., Cheng, C. L. and Koo, M. W., 2004. Inhibitory effects of Centella asiatica water extract and asiaticoside on inducible nitric oxide synthase during gastric ulcer healing in rats. Planta Med. 70: 1150 – 1154.
Hampel, H., Frank, R., Broich, K., Teipel, S. J., Katz, R. G., Hardy, J., Herholz, K., Bokde, A. L., Jessen, F., Hoessler, Y. C., Sanhai, W. R., Zetterberg, H., Woodcock, J., Blennow, K. 2010. Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov. 9: 560-574.
Hardy, J. A. and Higgins, G. A. 1992. Alzheimer's disease: the amyloid cascade hypothesis. Science. 256: 184-185.
Hardy, J. and Selkoe, D. J. 2002. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 297: 353-356.
Hirono. N., Hashimoto, M., Ishii, K., Kazui, H. and Mori, E. 2004. One-year change in cerebral glucose metabolism in patients with Alzheimer's disease. J Neuropsych Clin Neurosci. 16: 488-492.
Hoi, C. P., Ho, Y. P., Baum, L. and Chow, A. H. 2010. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother Res. 24: 1538-1542.
Hong. L., Koelsch, G., Lin, X., Wu, S., Terzyan, S., Ghosh, A. K., Zhang, X. C. and Tang, J. 2000. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science. 90: 150-153.
Huang,Y. S., Pan Y. Y. and Jia, Y. H. 2011. A study of anti-apoptosis effect and mechanism of jujuboside a in hydrogen peroxide damaged myocardial cell. J Tradit Chin Med. 3: 454-456.
Humphries, K.M. and Szweda, L.I. 1998. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry. 37: 15835-15841.
Incandela, L., Cesarone, M. R., Cacchio, M., De Sanctis, M. T., Santavenere, C., D’Auro, M. G., Bucci, M. and Belcaro, G. 2001. Total triterpenic fraction of Centella asiatica in chronic venous insufficiency and in high-perfusion microangiopathy. Angiology. 52: 9-13.
Jack, C. R. Jr, Lowe, V. J., Senjem, M. L., Weigand, S. D., Kemp, B. J., Shiung, M. M., Knopman, D. S., Boeve, B. F., Klunk, W. E., Mathis, C. A. and Petersen, R. C. 2008. 11C-PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain. 131: 665-680.
Janus, C., Pearson, J., McLaurin, J., Mathews, P. M., Jiang, Y., Schmidt, S. D., Chishti, M. A., Horne, P., Heslin, D., French, J., Mount, H. T., Nixon, R. A., Mercken, M., Bergeron, C., Fraser, P. E., St George-Hyslop, P. and Westaway, D. 2000. Abeta peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature. 408: 979-982.
Jellinger, K. A. 2001. Cell death mechanisms in neurodegeneration. J Cell Mol Med. 5: 1–17.
Jeong, J. C., Yoon, C. H., Lee, W. H., Park, K. K., Chang, Y. C., Choi, Y. H. and Kim C. H. 2005. Effects of Bambusae concretio Salicea (Chunchukhwang) on amyloid beta-induced cell toxicity and antioxidative enzymes in cultured rat neuronal astrocytes. J Ethnopharmacol. 98: 259-266.
Jiang, Q., Lee, C. Y., Mandrekar, S., Wilkinson, B., Cramer, P., Zelcer, N., Mann, K., Lamb, B., Willson, T. M., Collins, J. L., Richardson, J. C., Smith, J. D., Comery, T. A., Riddell, D., Holtzman, D. M., Tontonoz, P. and Landreth, G. E. 2008. ApoE promotes the proteolytic degradation of Abeta. Neuron. 58: 681-693.
Kajta M. 2004. Apoptosis in the central nervous system: Mechanisms and protective strategies. Pol J Pharmacol. 56: 689-700.
Kamal, A, Stokin, G. B., Yang, Z., Xia, C. H., Goldstein, L. S. 2000. Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron. 28: 449–459.
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X. and Peck, A. 1988. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol. 23: 138-144.
Keller, J. N., Mark, R. J., Bruce, A. J., Blanc, E., Rothstein, J. D., Uchida, K., Waeg, G., Mattson, M. P. 1997. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience. 80: 685-696.
Kircher, T. T., Erb, M., Grodd, W. and Leube, D. T. 2005. Cortical activation during cholinesterase-inhibitor treatment in Alzheimer disease: preliminary findings from a pharmaco-fMRI study. Am J Geriatr Psychiatry. 13: 1006-1013
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergstrom, M., Savitcheva, I., Huang, G. F., Estrada, S., Ausen, B., Debnath, M. L., Barletta, J., Price, J. C., Sandell, J., Lopresti, B. J., Wall, A., Koivisto, P., Antoni, G., Mathis, C. A. and Langstrom, B. 2004. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol. 55: 306-319.
Kourie, J. I. and Shorthouse, A. A. 2000. Properties of cytotoxic peptide-formed ion channels. Am J Physiol Cell Physiol. 278: 1063-1087.
Larson, M. E. and Lesne, S. E. 2012. Soluble Aβ oligomer production and toxicity. J Neurochem. 120: 125-139.
Lee, J., Retamal, C., Cuitino, L., Caruano-Yzermans, A. and Shin, J. E. 2008. Adaptor protein sorting nexin 17 regulates amyloid precursor protein trafficking and processing in the early endosomes. J Biol Chem. 283: 11501–11508.
Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D. M., Oshima, J, Pettingell, W. H., Yu, C., Jondro, P. D., Schmidt, S. D., Wang, K., Crowley, A. C., Fu, Y. H., Guenette, S. Y., Galas, D., Nemens, E., Wijsman, E. M., Bird, T. D., Schellenberg, G. D., and Tanzi, R. E. 1995. Candidate gene for the chromosome 1 familial Alzheimer's disease locus. Science. 269: 973-977.
Li, S., Yan, T., Yang, J. Q., Oberley, T. D., Oberley, L. W. 2000. The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res. 60: 3927-3939.
Liu, X., Xu, K., Yan, M., Wang, Y. and Zheng, X. 2010. Protective effects of galantamine against Abeta-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem Int. 7: 588-599.
Lopera, F., Ardilla, A., Martinez, A., Madrigal, L., Arango-Viana, J. C., Lemere, C. A., Arango-Lasprilla, J. C., Hincapie, L., Arcos-Burgos, M., Ossa, J. E., Behrens, I. M., Norton, J., Lendon, C., Goate, A. M., Ruiz-Linares, A., Rosselli, M. and Kosik, K. S. 1997. Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA. 277: 793-799.
Ma, J. J., Liu, P. and Ma, B. P. 2011. The chemical constituents of Semen Zizyphi Spinosae and pharmacologic mechanism of its sedative and hypnotic effects: research advances. J Int Pharm Res. 38: 206-211.
Ma, W., Yuan, L., Yu, H., Ding, B., Xi, Y., Feng, J. and Xiao, R. 2010. Genistein as a neuroprotective antioxidant attenuates redox imbalance induced by beta-amyloid peptides 25-35 in PC12 cells. Int J Dev Neurosci. 28: 289-295.
Maiese, K. 2002. Organic brain disease. In: Encyclopedia of the Human Brain. Ramachandran VS (ed.) Elsevier Science. 509-527.
Mattson, M. P. 1997. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev. 77: 1081-1132.
Mattson M. P. 2003. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromol Med. 3: 65-94.
Mattson, M. P. 2004. Pathways towards and away from Alzheimer's disease. Nature. 430: 631-639.
Mattson, M. P., Cheng, B., Culwell, A. R., Esch, F. S., Lieberburg, I. and Rydel, R. E. 1993. Evidence for excitoprotective and intraneuronal calcium-regulating roles for secreted forms of the beta-amyloid precursor protein. Neuron. 10: 243-254.
Mook-Jung, I., Shin, J. E., Yun, S. H., Huh, K., Koh, J. Y., Park, H. K., Jew, S. S. and Jung, M. W. 1999. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res. 58: 417-425.
Morgan, D., Diamond, D. M., Gottschall, P. E., Ugen, K. E., Dickey, C., Hardy, J., Duff, K., Jantzen, P., DiCarlo, G., Wilcock, D., Connor, K., Hatcher, J., Hope, C., Gordon, M. and Arendash, G. W. 2000. Abeta peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature. 408: 982-985.
Muller, T., Meyer, H. E., Egensperger, R., Marcus, K. 2008. The amyloid precursor protein intracellular domain (AICD) as modulator of gene expression, apoptosis, and cytoskeletal dynamics-relevance for Alzheimer's disease. Prog Neurobiol. 85: 393-406.
Mungarro-Menchaca X., Ferrera P., Moran J., Arias C. 2002. beta-Amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res. 68: 89-96.
Nagy, Z., Jobst, K. A., Esiri, M. M., Morris, J. H., King, E. M., MacDonald, B., Litchfield, S., Barnetson, L. and, A. D. 1996. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer's disease: clinicopathologic correlations using three sets of pathologicdiagnostic criteria. Dementia. 7: 76-81.
Naslund, J., Haroutunian, V., Mohs, R., Davis, K. L., Davies, P., Greengard, P. and Buxbaum, J. D. 2000. Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA. 283: 1571-1577.
Nikolaev, A., McLaughlin, T., O'Leary, D. D. and Tessier-Lavigne, M. 2009. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. 457: 981-989.
O’Brien, R. J. and Wong, P. C. 2011. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu Rev Neurosci. 34: 185–204.
Peng, W. H., Hsieh, M. T., Lee, Y. S., Lin, Y. C., and Liao, J., 2000. Anxiolytic effect of seed of Ziziphus jujuba in mouse models of anxiety. J Ethnopharmacol.. 72: 435 - 441.
Peng, Z., Zhang, H., Cheng, S. and Guo, W. 1995. Protective effect of semen Ziziphi spinosae on superoxide dismutase reduction in mice with endotoxin fever. Zhongguo Zhong Yao Za Zhi. 20: 369-370.
Querfurth, H. W. and LaFerla, F. M. 2010. Alzheimer's Disease. N Engl J. 362: 329-344.
Roses, A. D. and Saunders, A. M. 1994. APOE is a major susceptibility gene for Alzheimer’s disease. Curr. Opin. Biotechnol. 5: 663-667.
Rosen, H., Blumenthal, A. and McCallum, J., 1967. Effect of asiaticoside on wound healing in the rat. Proc Soc Exp Biol Med. 125: 279–280.
Rafamantanana, M. H., Rozet, E., Raoelison, G. E., Cheuk, K., Ratsimamanga, S. U., Hubertc, P. and Quetin-Leclercq, J. 2009. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE). J Chromatogr B Analyt Technol Biomed Life Sci. 887: 2396-2402.
Saido, T. C. and Iwata, N. 2006. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer's disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res. 54: 235-253.
Sastravaha, G., Gassmann, G., Sangtherapitikul, P., Grimm, W. D., 2005. Adjunctive periodontal treatment with Centella asiatica and Punica granatum extracts in supportive periodontal therapy. J Int Acad Periodontol. 7:70 – 79.
Scarpini, E., Scheltens, P. and Feldman, H. 2003. Treatment of Alzheimer's disease: current status and new perspectives. Lancet Neurol. 2: 539-547.
Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D. and Seubert, P. 1999. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 400: 173-177.
Schweber, M. 1985. A possible unitary genetic hypothesis for Alzheimer’s disease and Down syndrome. Ann NY Acad Sci. 450: 223-238.
Selkoe, D. J.1997. Alzheimer’s disease: genotypes, phenotypes, and treatments. Science. 275: 630-631.
Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J. F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A., Haines, J. L., Perkicak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M. and St George-Hyslop, P. H. 1995. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 375: 754-760.
Shou, C., Feng, Z., Wang, J. and Zheng, X., 2002. The inhibitory effects of jujuboside A on rat hippocampus in vivo and in vitro. Planta Medica 68: 799–803.
Siemers, E. R., Quinn, J. F., Kaye, J., Farlow, M. R., Porsteinsson, A., Tariot, P., Zoulnouni, P., Galvin, J. E., Holtzman, D. M., Knopman, D. S., Satterwhite, J., Gonzales, C., Dean, R. A. and May, P.C. 2006. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology. 66: 602-604.
Small, G. W, Rabins, P. V., Barry, P. P., Buckholtz, N. S, DeKosky, S. T., Ferris, S. H., Finkel, S. I., Gwyther, L. P., Khachaturian, Z. S., Lebowitz, B. D., McRae, T. D., Morris, J. C., Oakley, F., Schneider, L. S., Streim, J. E., Sunderland, T., Teri, L. A. and Tune, L. E. 1997. Diagnosis and treatment of Alzheimer’s disease and related disorders. Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA. 278: 1363-1371.
Soumyanath, A., Zhong, Y. P., Henson, E., Wadsworth, T., Bishop, J., Gold, B. G., Quinn, J. F. 2012. Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer's disease: investigation of a possible mechanism of action. Int J Alzheimers Dis. 2012: 381974-381983.
Subathra, M., Shila, S., Devi, M. A. and Panneerselvam, C. 2005. Emerging role of Centella asiatica in improving age-related neurological antioxidantstatus. Exp Gerontol. 40: 707-715.
Suguna, L., Sivakumar, P. and Chandrakasan, G., 1996. Effects of Centella asiatica extract on dermal wound healing in rats. Indian J Exp Biol. 34: 1208 - 1211.
Sun, Z. K., Yang, H. Q., Wang, Z. Q., Pan, J., Hong Z., Chen, S. D. 2012. Erythropoietin prevents PC12 cells from beta-amyloid-induced apoptosis via PI3K⁄Akt pathway. Transl Neurodegener. 1: 7.
Sung, Y. J., Cheng, C. L., Chen, C. S., Huang, H. B., Huang, F. L., Wu, P. C., Shiao, M. S. and Tsay, H. J. 2003. Distinct mechanisms account for beta-amyloid toxicity in PC12 and differentiated PC12 neuronal cells. J Biomed Sci. 10: 379-388.
Sunilkumar, Parameshwaraiah, S. and Shivakumar, H. G. 1998. Evaluation of topical formulations of aqueous extract of Centella asiatica on open wounds in rats. Indian J Exp Biol. 36: 569 – 572.
Tan, J., Town, T., Placzek, A., Kundtz, A., Yu, H. and Mullan, M. 1999. Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer's beta-amyloid1-40 peptide in PC12 cells. Neurosci Lett. 272: 5-8.
Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M. and Niimura, M. 2003. The role of presenilin cofactors in the gamma-secretase complex. Nature. 422: 438–441.
Terry, R. D. 1994 Neuropathological changes in Alzheimer disease. Prog Brain Res. 101: 383-390.
Varadarajan, S., Kanski, J., Aksenova, M., Lauderback, C. and Butterfield, D. A. 2001. Different mechanisms of oxidative stress and neurotoxicity for Alzheimer's A beta(1-42) and A beta(25-35). J Am Chem Soc. 123: 5625-5631
Varadarajan, S., Yatin, S., Kanski, J., Jahanshahi, F. and Butterfield, D. A. 1999. Methionine residue 35 is important in amyloid beta-peptide-associated free radical oxidative stress. Brain Res Bull. 50: 133-141.
Van-Marum, R. J. 2008. Current and future therapy in Alzheimer's disease. Fundam Clin Pharmacol. 22: 265-274.
Vaudry, D., Stork, P. J., Lazarovici, P. and Eiden, L. E. 2002. Signaling pathways for PC12 cell differentiation: making the right connections. Science. 296: 1648-1649.
Veerendra-Kumar, M. H. and Gupta, Y. K. 2002. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 79: 253-260.
Villard, V., Espallergues, J., Keller, E., Alkam, T., Nitta, A., Yamada, K., Nabeshima, T., Vamvakides, A. and Maurice, T. 2009. Antiamnesic and neuroprotective effects of the aminotetrahydrofuran derivative ANAVEX1-41 against amyloid beta(25-35) induced toxicity in mice. Neuropsychopharmacology. 34: 1552-1566.
Wei, W., Norton, D. D., Wang, X. and Kusiak, J. W. 2002. A beta 17-42 in Alzheimer’s disease activates JNK and caspase-8 leading to neuronal apoptosis. Brain. 125: 2036-2043.
Winterstein, A. P. and Storrs, C. M. 2001. Herbal supplements: considerations for the athletic trainer. J. Athletic Training. 36: 425-432.
Wolfe, M. S., Xia, W., Ostaszewski, B. L., Diehl, T. S., Kimberly, W. T. and Selkoe, D. J. 1999. Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature. 398: 513–517.
Xu, J., Chen, S., Ku, G., Ahmed, S. H., Xu, J., Chen, H. and Hsu, C. Y. 2001. Amyloid beta peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab. 21: 702-710.
Zhou, Y., Li, Y., Wang, Z., Ou, Y. and Zhou, X. 1994. 1H NMR and spin-labeled EPR studies on the interaction of calmodulin with jujuboside A. Biochem Biophys Res Commun. 202: 148-154.
Zhang, M., Zhang, Y. and Xie, J. 2008. Simultaneous determination of jujuboside A, B and betulinic acid in semen Ziziphi spinosae by high performance liquid chromatography-evaporative light scattering detection. J Pharm Biomed Anal. 48: 1467-1470.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6067-
dc.description.abstract阿茲海默症 (Alzheimer’s disease, AD) 是好發於 65 歲以上老年人之神經退化性疾病,使患者在記憶、語言與行為等多種認知功能出現退化,嚴重影響病人的生活品質與人際關係。其致病原因是聚合之類澱粉樣蛋白質 β (amyloid β, Aβ) 於腦部大量沉積,Aβ 會造成神經細胞氧化壓力與細胞凋亡,被視為造成阿茲海默症的主因。目前許多新開發中的藥物或保健食品,皆以 Aβ 作為目標,包含降低含量,減緩其造成的氧化壓力等。傳統的中草藥被應用在疾病預防已有數千年歷史,近年來也開發用於改善阿茲海默症。其中以銀杏萃取物,發展最為成功,已經被廣泛使用在歐美的保健食品中。
根據本研究室的研究結果,雷公根與酸棗仁在動物模式與細胞模式中,皆有保護大鼠與神經細胞的能力。本論文希望找出其有效成分並針對抗氧化壓力與細胞凋亡進行研究。
本研究首先先以外觀與顯微鑑定法鑑定雷公根酸棗仁是否為正品。確認為正品後,以 Aβ25-35 誘導分化的 PC12 細胞造成傷害作為細胞模式,討論雷公根與酸棗仁的有效成分之保護作用,並深入探討抗氧化壓力與細胞凋亡的方式。研究結果發現,雷公根內含量較多的兩個成分,madecoside (MS) 和asiaticoside (AS) 以及酸棗仁的 jujuboside A (JA),皆可降低 Aβ25-35 造成的細胞毒性。此外將此三種物質再和 Aβ25-35 共培養 6 小時後進行抗氧化能力測試,發現 reactive oxygen species (ROS) 與 glutathione/glutathione disulfide (GSH/GSSG) 兩種氧化壓力指標皆會改善,三種物質皆能顯著提高 catalase (CAT) 的活性,但只有 MS 能顯著提高 glutathione peroxidase (GPx) 的活性,而 AS 與 JA 則較能顯著提高superoxide dismutase (SOD) 的活性,顯示三種成分雖藉由不同方式但皆具有抗氧化的能力。
細胞凋亡可以分為兩個途徑,死亡受器途徑 (death receptor pathway) 與粒線體途徑。死亡受器途徑中,物質活化 caspase-8,進而活化 caspase-3,造成細胞凋亡。粒線體途徑中,壓力藉由活化 caspase-9,進而活化 caspase-3,造成細胞凋亡。我們研究發現,MS 和 JA 抗細胞凋亡的效果較好,且可透過調節死亡受器與粒線體兩個途徑。但 AS 效果較差,僅能調節死亡受器途徑。本研究顯示 MS 與 JA 可能為雷公根與酸棗仁能改善阿茲海默症的主要有效成分,而其機制則為增強抗氧化酵素活性與降低細胞凋亡。
zh_TW
dc.description.abstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder mostly affecting the population of above 65 years of age. AD patients suffer from many cognitive abilities losses such as memory loss, language disability and behavior dysfunction, etc, and seriously affected their quality of life and social relationship. The most important pathology of AD is Amyloid β (Aβ) deposit, and Aβ causes oxidative stress and apoptosis in neuron, which is considered as the major reason for AD. Now lots of new drugs or health food in development begin with Aβ as the target, including decreasing levels and oxidative stress. Traditional Chinese herbal medicine has been used for thousands of years in the disease, in recent years, it developed to improve Alzheimer's disease. Among them, Ginkgo biloba extract, the most successful development has been widely used as health foods in Europe and U.S.
According to the experimental results of our laboratory, Centella asiatica and Ziziphi spinosae semen have the abilities to protect rat and neuron in animal model and cell model. This study tries to find the effective compounds and research for the anti-oxidative ability and anti-aoptosis anbility.
At first, we identify Centella asiatica and Ziziphi spinosae semen by appearance and microscope. Then our study established the Aβ25-35-induced damage in differentiated PC12 cells as a cell model to discuss the protective effect of effective compounds in Centella asiatica and Ziziphi spinosae semen, and dive into the anti-oxidative stress and apoptosis. The experimental results show that the abundant component, madecoside (MS) and asiaticoside (AS) in Centella asiatica and the jujuboside A (JA) in Ziziphi spinosae semen, can reduce Aβ25-35 induced cytotoxicity. Co-culture the three substances with Aβ25-35 in 6 hr, and test the antioxidant capacity, we found they can improve both reactive oxygen species (ROS) and glutathione/glutathione disulfide (GSH/GSSG), enhance the activity of catalase (CAT), but only MS can enhance the activity of glutathione peroxidase (GPx) , and AS and JA can enhance the activity of superoxide dismutase (SOD). Those results show that they have antioxidant capacity by different ways.
Apoptosis can be divided into two pathways, death receptor pathway and mitochondrial pathway. In death receptor pathway, ligands activate caspase-8, and then activate caspase-3, in the end they induce apoptosis. In mitochondrial pathway, stress activates caspase-9, and then activates caspase-3, in the end they induce apoptosis. In our study, we find MS and JA have better anti-apoptosis abilities, and they can regulate death receptor pathway and mitochondrial pathway. But AS has poor effect, it can only regulate death receptor pathway. This study shows that MS and JA may be the effective compound in Centella asiatica and Ziziphi spinosae semen, and can improve Alzheimer's disease by enhancing the activities of antioxidant enzymes and reducing apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:20:20Z (GMT). No. of bitstreams: 1
ntu-102-R00b22038-1.pdf: 8353222 bytes, checksum: 3daa932c4f426f20c76ce154f2daa775 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員會審定書 I
謝誌 …………………………………………………………………………… II
摘要 …………………………………………………………………………… III
Abstract………………………………………………………………………… VI
縮寫表 ………………………………………………………………………… VII
第一章、文獻回顧 …………………………………………………………… 1
一、阿茲海默症文獻回顧 …………………………………………………… 1
(一) 失智症與阿茲海默症盛行率…………………………………………… 1
(二) 阿茲海默症之發現與分類……………………………………………… 2
(三) 阿茲海默症之病理成因 ……………………………………………… 3
(四) 阿茲海默症的危險因子 ……………………………………………… 13
(五) 阿茲海默症之臨床診斷 ……………………………………………… 14
(六) 阿茲海默症之治療策略 ……………………………………………… 24
二、細胞模式…………………………………………………………………… 28
三、中草藥產品與阿茲海默症之關係………………………………………… 29
(一) 雷公根之簡介 ………………………………………………………… 29
(二) 酸棗仁之簡介…………………………………………………………… 31
第二章、研究動機與大綱……………………………………………………… 34
第三章、材料與方法…………………………………………………………… 37
一、實驗材料 …………………………………………………………………… 37
二、實驗方法…………………………………………………………………… 40
第一部分:基原鑑定…………………………………………………………… 40
第二部分:有效成分篩選……………………………………………………… 40
第三部分:雷公根與酸棗仁有效物質抗 Aβ 氧化傷害能力分析………… 45
第四部分:雷公根與酸棗仁萃有效物質抗 Aβ 細胞凋亡能力分析……… 47
第四章、結果與討論…………………………………………………………… 49
第一部分:基原鑑定…………………………………………………………… 49
(一) 雷公根外鑑定與組織切片鑑定………………………………………… 49
(二) 酸棗仁外鑑定與組織切片鑑定………………………………………… 49
(三) 雷公根與酸棗仁之 DNA 鑑定……………………………………… 54
第二部分: 有效成分分析……………………………………………………… 58
(一) 雷公根與酸棗仁萃取物抗 Aβ1-40 誘發 dPC12 細胞毒性能力評估… 58
(二) 雷公根與酸棗仁萃取物成分分析…………………………………… 61
(三) MS、AS 和 JA 抗 Aβ1-40 與 Aβ25-35 誘發 dPC12 細胞毒性能力
評估…………………………………………………………………… 65
第三部分:雷公根與酸棗仁有效物質抗 Aβ 氧化傷害能力分析…………… 73
(一) 雷公根萃取物成分 MS 與 AS 的抗氧化能力分析………………… 73
(二) 酸棗仁萃取物成分 JA 的抗氧化能力分析………………………… 78
第四部分:雷公根與酸棗仁有效物質抗 Aβ 細胞凋亡能力分析……… 84
(一) 雷公根萃取物成分 MS 與 AS 的抗細胞凋亡能力分析…………… 84
(二) 酸棗仁萃取物成分 JA 的抗細胞凋亡能力分析……………………… 91
第五章、綜合討論……………………………………………………………… 98
第六章、參考文獻 …………………………………………………………… 103
dc.language.isozh-TW
dc.title雷公根和酸棗仁之有效成分對 Aβ 造成神經損傷之保護作用zh_TW
dc.titleThe protection effects of effective compounds in Centella asiatica (L.) Urban and Ziziphi spinosae semen against amyloid beta induced neural damageen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇慕寰,李俊霖,王銘富,花茂棽
dc.subject.keyword阿茲海默症,類澱粉樣蛋白質,雷公根,酸棗仁,PC12細胞,抗氧化酵素活性,細胞凋亡,zh_TW
dc.subject.keywordAlzheimer’s disease,amyloid β,Centella asiatica,Ziziphi spinosae semen,PC12 cells,antixoidative enzyme,apoptosis.,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2014-07-04
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf8.16 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved