請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60677
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 尹相姝(Hsiang-Shu Yin) | |
dc.contributor.author | Li-Hsin Peng | en |
dc.contributor.author | 彭立欣 | zh_TW |
dc.date.accessioned | 2021-06-16T10:25:44Z | - |
dc.date.available | 2016-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | 1. Altman, J. & G. D. Das (1965) Post-natal origin of microneurones in the rat brain. Nature, 207, 953-6.
2. Alvarez-Buylla, A. & J. M. Garcia-Verdugo (2002) Neurogenesis in adult subventricular zone. J Neurosci, 22, 629-34. 3. Anton, E. S., H. T. Ghashghaei, J. L. Weber, C. McCann, T. M. Fischer, I. D. Cheung, M. Gassmann, A. Messing, R. Klein, M. H. Schwab, K. C. Lloyd & C. Lai (2004) Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat Neurosci, 7, 1319-28. 4. Badner, J. A. & E. S. Gershon (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry, 7, 405-11. 5. Banisadr, G., T. J. Frederick, C. Freitag, D. Ren, H. Jung, S. D. Miller & R. J. Miller (2011) The role of CXCR4 signaling in the migration of transplanted oligodendrocyte progenitors into the cerebral white matter. Neurobiol Dis, 44, 19-27. 6. Bayer, S. A. (1983) 3H-thymidine-radiographic studies of neurogenesis in the rat olfactory bulb. Exp Brain Res, 50, 329-40. 7. Bell, M. D., S. Corbera, J. K. Johannesen, J. M. Fiszdon & B. E. Wexler (2013) Social Cognitive Impairments and Negative Symptoms in Schizophrenia: Are There Subtypes With Distinct Functional Correlates? Schizophrenia Bulletin, 39, 186-196. 8. Belluzzi, O., M. Benedusi, J. Ackman & J. J. LoTurco (2003) Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci, 23, 10411-8. 9. Betarbet, R., T. Zigova, R. A. Bakay & M. B. Luskin (1996) Dopaminergic and GABAergic interneurons of the olfactory bulb are derived from the neonatal subventricular zone. Int J Dev Neurosci, 14, 921-30. 10. Bhattacharya, S. K. & K. S. Satyan (1997) Experimental methods for evaluation of psychotropic agents in rodents: I--Anti-anxiety agents. Indian J Exp Biol, 35, 565-75. 11. Black, J. E., I. M. Kodish, A. W. Grossman, A. Y. Klintsova, D. Orlovskaya, V. Vostrikov, N. Uranova & W. T. Greenough (2004) Pathology of layer v pyramidal neurons in the prefrontal cortex of patients with schizophrenia. American Journal of Psychiatry, 161, 742-744. 12. Brazel, C. Y., M. J. Romanko, R. P. Rothstein & S. W. Levison (2003) Roles of the mammalian subventricular zone in brain development. Progress in Neurobiology, 69, 49-69. 13. Brinkmann, B. G., A. Agarwal, M. W. Sereda, A. N. Garratt, T. Muller, H. Wende, R. M. Stassart, S. Nawaz, C. Humml, V. Velanac, K. Radyushkin, S. Goebbels, T. M. Fischer, R. J. Franklin, C. Lai, H. Ehrenreich, C. Birchmeier, M. H. Schwab & K. A. Nave (2008) Neuregulin-1/ErbB signaling serves distinct functions in myelination of the peripheral and central nervous system. Neuron, 59, 581-95. 14. Brown, A. S. (2006) Prenatal infection as a risk factor for schizophrenia. Schizophrenia Bulletin, 32, 200-202. 15. Brown, A. S. & E. S. Susser (2008) Prenatal Nutritional Deficiency and Risk of Adult Schizophrenia. Schizophrenia Bulletin, 34, 1054-1063. 16. Brown, J. P., S. Couillard-Despres, C. M. Cooper-Kuhn, J. Winkler, L. Aigner & H. G. Kuhn (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol, 467, 1-10. 17. Buchanan, R. W., D. C. Javitt, S. R. Marder, N. R. Schooler, J. M. Gold, R. P. McMahon, U. Heresco-Levy & W. T. Carpenter (2007) The Cognitive and Negative Symptoms in Schizophrenia, Trial (CONSIST): The efficacy of glutamatergic agents for negative symptoms and cognitive impairments. American Journal of Psychiatry, 164, 1593-1602. 18. Cai, Y., K. Xiong, Y. Chu, D. W. Luo, X. G. Luo, X. Y. Yuan, R. G. Struble, R. W. Clough, D. D. Spencer, A. Williamson, J. H. Kordower, P. R. Patrylo & X. X. Yan (2009) Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol, 216, 342-56. 19. Cantor-Graae, E. & J. P. Selten (2005) Schizophrenia and migration: A meta-analysis and review. American Journal of Psychiatry, 162, 12-24. 20. Capela, A. & S. Temple (2002) LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 35, 865-75. 21. Carraway, K. L., J. L. Weber, M. J. Unger, J. Ledesma, N. Yu, M. Gassmann & C. Lai (1997) Neuregulin-2, a new ligand of ErbB3/ErbB4-receptor tyrosine kinases. Nature, 387, 512-516. 22. Cate, H. S., J. K. Sabo, D. Merlo, D. Kemper, T. D. Aumann, J. Robinson, T. D. Merson, B. Emery, V. M. Perreau & T. J. Kilpatrick (2010) Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. J Neurochem, 115, 11-22. 23. Chen, Y. J. J., M. A. Johnson, M. D. Lieberman, R. E. Goodchild, S. Schobel, N. Lewandowski, G. Rosoklija, R. C. Liu, J. A. Gingrich, S. Small, H. Moore, A. J. Dwork, D. A. Talmage & L. W. Role (2008) Type III neuregulin-1 is required for normal sensorimotor gating, memory-related behaviors, and corticostriatal circuit components. Journal of Neuroscience, 28, 6872-6883. 24. Chiang, Y.H. and Fu, W.M. (2009) Functional study of schizophrenia-related gene of Neuregulin1. NTU Master Thesis. 25. Chou, M.C. and Yin, H.S. (2009) Changes in the dopaminergic, GABAergic, and doublecortin expression in frontal brain regions of developing Neuregulin1-mutant mice. NTU Master Thesis. 26. Chu, M., X. Hu, S. Lu, Y. Gan, P. Li, Y. Guo, J. Zhang, J. Chen & Y. Gao (2012) Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Front Biosci (Elite Ed), 4, 1926-36. 27. Citri, A., K. B. Skaria & Y. Yarden (2003) The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Experimental Cell Research, 284, 54-65. 28. Clancy, B., B. L. Finlay, R. B. Darlington & K. J. S. Arland (2007) Extrapolating brain development from experimental species to humans. Neurotoxicology, 28, 931-937. 29. Cogle, C. R., A. T. Yachnis, E. D. Laywell, D. S. Zander, J. R. Wingard, D. A. Steindler & E. W. Scott (2004) Bone marrow transdifferentiation in brain after transplantation: a retrospective study. Lancet, 363, 1432-7. 30. Collier, D. A. & T. Li (2003) The genetics of schizophrenia: glutamate not dopamine? European Journal of Pharmacology, 480, 177-184. 31. Corfas, G., K. Roy & J. Buxbaum (2004a) Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nature Neuroscience, 7, 575-580. 32. Corfas, G., M. O. Velardez, C. P. Ko, N. Ratner & E. Peles (2004b) Mechanisms and roles of axon-Schwann cell interactions. Journal of Neuroscience, 24, 9250-9260. 33. Doetsch, F., I. Caille, D. A. Lim, J. M. Garcia-Verdugo & A. Alvarez-Buylla (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97, 703-16. 34. Doetsch, F., J. M. Garcia-Verdugo & A. Alvarez-Buylla (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17, 5046-61. 35. Doetsch, F., L. Petreanu, I. Caille, J. M. Garcia-Verdugo & A. Alvarez-Buylla (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36, 1021-34. 36. Ellison-Wright, I. & E. Bullmore (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res, 108, 3-10. 37. Flames, N., J. E. Long, A. N. Garratt, T. M. Fischer, M. Gassmann, C. Birchmeier, C. Lai, J. L. Rubenstein & O. Marin (2004) Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron, 44, 251-61. 38. Francis, F., A. Koulakoff, D. Boucher, P. Chafey, B. Schaar, M. C. Vinet, G. Friocourt, N. McDonnell, O. Reiner, A. Kahn, S. K. McConnell, Y. Berwald-Netter, P. Denoulet & J. Chelly (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron, 23, 247-256. 39. Fu, A. K., W. Y. Fu, J. Cheung, K. W. Tsim, F. C. Ip, J. H. Wang & N. Y. Ip (2001) Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci, 4, 374-81. 40. Fujii, Y., H. Shibata, R. Kikuta, C. Makino, A. Tani, N. Hirata, A. Shibata, H. Ninomiya, N. Tashiro & Y. Fukumaki (2003) Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatr Genet, 13, 71-6. 41. Garcia, A. D., N. B. Doan, T. Imura, T. G. Bush & M. V. Sofroniew (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7, 1233-41. 42. Gassmann, M., F. Casagranda, D. Orioli, H. Simon, C. Lai, R. Klein & G. Lemke (1995) Aberrant Neural and Cardiac Development in Mice Lacking the Erbb4 Neuregulin Receptor. Nature, 378, 390-394. 43. Ghashghaei, H. T., J. Weber, L. Pevny, R. Schmid, M. H. Schwab, K. C. Lloyd, D. D. Eisenstat, C. Lai & E. S. Anton (2006) The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A, 103, 1930-5. 44. Giordano, R., R. Berardelli, I. Karamouzis, V. D'Angelo, A. Picu, C. Zichi, B. Fussotto, M. Manzo, G. Mengozzi, E. Ghigo & E. Arvat (2013) Acute administration of alprazolam, a benzodiazepine activating GABA receptors, inhibits cortisol secretion in patients with subclinical but not overt Cushing's syndrome. Pituitary, 16, 363-9. 45. Glahn, D., A. Reichenberg, S. Frangou & H. Ormel (2008) Psychiatric neuroimaging: Joining forces with epidemiology. European Psychiatry, 23, 315-319. 46. Gleeson, J. G., P. T. Lin, L. A. Flanagan & C. A. Walsh (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23, 257-71. 47. Gomez-Climent, M. A., E. Castillo-Gomez, E. Varea, R. Guirado, J. M. Blasco-Ibanez, C. Crespo, F. J. Martinez-Guijarro & J. Nacher (2008) A population of prenatally generated cells in the rat paleocortex maintains an immature neuronal phenotype into adulthood. Cereb Cortex, 18, 2229-40. 48. Gomez-Climent, M. A., S. Hernandez-Gonzalez, K. Shionoya, M. Belles, G. Alonso-Llosa, F. Datiche & J. Nacher (2011) Olfactory bulbectomy, but not odor conditioned aversion, induces the differentiation of immature neurons in the adult rat piriform cortex. Neuroscience, 181, 18-27. 49. Gur, R. E., C. G. Kohler, J. D. Ragland, S. J. Siegel, K. Lesko, W. B. Bilker & R. C. Gur (2006) Flat affect in schizophrenia: relation to emotion processing and neurocognitive measures. Schizophr Bull, 32, 279-87. 50. Harari, D., E. Tzahar, J. Romano, M. Shelly, J. H. Pierce, G. C. Andrews & Y. Yarden (1999) Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase. Oncogene, 18, 2681-2689. 51. Harrison, P. J. & A. J. Law (2006) Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 132-140. 52. He, J. & F. T. Crews (2007) Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav, 86, 327-33. 53. Hess, D. C., T. Abe, W. D. Hill, A. M. Studdard, J. Carothers, M. Masuya, P. A. Fleming, C. J. Drake & M. Ogawa (2004) Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol, 186, 134-44. 54. Hess, D. C., W. D. Hill, A. Martin-Studdard, J. Carothers, J. Brailer & J. Carroll (2002) Blood into brain after stroke. Trends Mol Med, 8, 452-3. 55. Hibbits, N., R. Pannu, T. J. Wu & R. C. Armstrong (2009) Cuprizone demyelination of the corpus callosum in mice correlates with altered social interaction and impaired bilateral sensorimotor coordination. ASN Neuro, 1. 56. Higashiyama, S., H. Iwabuki, C. Morimoto, M. Hieda, H. Inoue & N. Matsushita (2008) Membrane-anchored growth factors, the epidermal growth factor family: Beyond receptor ligands. Cancer Science, 99, 214-220. 57. Higashiyama, S., D. Nanba, H. Nakayama, H. Inoue & S. Fukuda (2011) Ectodomain shedding and remnant peptide signalling of EGFRs and their ligands. Journal of Biochemistry, 150, 15-22. 58. Hinds, J. W. (1968) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J Comp Neurol, 134, 287-304. 59. Holly S. Cate, Jennifer K. Sabo, Daniel Merlo, Dennis Kemper, Tim D. Aumann, Julien Robinson, Toby D. Merson, Ben Emery, Victoria M. Perreau, Trevor J. Kilpatrick (2010) Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelination. Journal of NeurochemistryVolume 115, Issue 1, pages 11–22, October 2010 60. Holmes, W. E., M. X. Sliwkowski, R. W. Akita, W. J. Henzel, J. Lee, J. W. Park, D. Yansura, N. Abadi, H. Raab, G. D. Lewis, H. M. Shepard, W. J. Kuang, W. I. Wood, D. V. Goeddel & R. L. Vandlen (1992) Identification of Heregulin, a Specific Activator of P185erbb2. Science, 256, 1205-1210. 61. Horesh, D., T. Sapir, F. Francis, S. G. Wolf, M. Caspi, M. Elbaum, J. Chelly & O. Reiner (1999) Doublecortin, a stabilizer of microtubules. Hum Mol Genet, 8, 1599-610. 62. Hynes, N. E., K. Horsch, M. A. Olayioye & A. Badache (2001) The ErbB receptor tyrosine family as signal integrators. Endocrine-Related Cancer, 8, 151-159. 63. Imura, T., H. I. Kornblum & M. V. Sofroniew (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci, 23, 2824-32. 64. Inta, D., J. Alfonso, J. von Engelhardt, M. M. Kreuzberg, A. H. Meyer, J. A. van Hooft & H. Monyer (2008) Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proceedings of the National Academy of Sciences of the United States of America, 105, 20994-20999. 65. Jin, K. L., M. Minami, J. Q. Lan, X. O. Mao, S. Batteur, R. P. Simon & D. A. Greenberg (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proceedings of the National Academy of Sciences of the United States of America, 98, 4710-4715. 66. Jones, K. S. & B. Connor (2012) Intrinsic regulation of adult subventricular zone neural progenitor cells and the effect of brain injury. Am J Stem Cells, 1, 48-58. 67. Kakita, A. & J. E. Goldman (1999) Patterns and dynamics of SVZ cell migration in the postnatal forebrain: Monitoring living progenitors in slice preparations. Neuron, 23, 461-472. 68. Keshavan, M. S., D. M. Montrose, J. N. Pierri, E. L. Dick, D. Rosenberg, L. Talagala & J. A. Sweeney (1997) Magnetic resonance imaging and spectroscopy in offspring at risk for schizophrenia: Preliminary studies. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21, 1285-1295. 69. Krabbendam, L. & J. van Os (2005) Schizophrenia and urbanicity: A major environmental influence - Conditional on genetic risk. Schizophrenia Bulletin, 31, 795-799. 70. Kramer, R., N. Bucay, D. J. Kane, L. E. Martin, J. E. Tarpley & L. E. Theill (1996) Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. Proceedings of the National Academy of Sciences of the United States of America, 93, 4833-4838. 71. Kriegstein, A. & A. Alvarez-Buylla (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32, 149-84. 72. Lemke, G. (1996) Neuregulins in development. Molecular and Cellular Neuroscience, 7, 247-262. 73. Lewis, C. M., D. F. Levinson, L. H. Wise, L. E. DeLisi, R. E. Straub, I. Hovatta, N. M. Williams, S. G. Schwab, A. E. Pulver, S. V. Faraone, L. M. Brzustowicz, C. A. Kaufmann, D. L. Garver, H. M. Gurling, E. Lindholm, H. Coon, H. W. Moises, W. Byerley, S. H. Shaw, A. Mesen, R. Sherrington, F. A. O'Neill, D. Walsh, K. S. Kendler, J. Ekelund, T. Paunio, J. Lonnqvist, L. Peltonen, M. C. O'Donovan, M. J. Owen, D. B. Wildenauer, W. Maier, G. Nestadt, J. L. Blouin, S. E. Antonarakis, B. J. Mowry, J. M. Silverman, R. R. Crowe, C. R. Cloninger, M. T. Tsuang, D. Malaspina, J. M. Harkavy-Friedman, D. M. Svrakic, A. S. Bassett, J. Holcomb, G. Kalsi, A. McQuillin, J. Brynjolfson, T. Sigmundsson, H. Petursson, E. Jazin, T. Zoega & T. Helgason (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet, 73, 34-48. 74. Li, D. W., D. A. Collier & L. He (2006) Meta-analysis shows strong positive association of the neuregulin 1 (NRG1) gene with schizophrenia. Human Molecular Genetics, 15, 1995-2002. 75. Li, Y., J. L. Chen & M. Chopp (2002) Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. Journal of the Neurological Sciences, 193, 137-146. 76. Lledo, P. M., M. Alonso & M. S. Grubb (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci, 7, 179-93. 77. Lois, C. & A. Alvarez-Buylla (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A, 90, 2074-7. 78. Lois, C., J. M. Garcia-Verdugo & A. Alvarez-Buylla (1996) Chain migration of neuronal precursors. Science, 271, 978-81. 79. Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 11, 173-89. --- (1998) Neuroblasts of the postnatal mammalian forebrain: their phenotype and fate. J Neurobiol, 36, 221-33. 80. Mahar, I., S. Tan, M. A. Davoli, S. Dominguez-Lopez, C. Qiang, A. Rachalski, G. Turecki & N. Mechawar (2011) Subchronic peripheral neuregulin-1 increases ventral hippocampal neurogenesis and induces antidepressant-like effects. PLoS One, 6, e26610. 81. Marchionni, M. A., A. D. J. Goodearl, M. S. Chen, O. Berminghammcdonogh, C. Kirk, M. Hendricks, F. Danehy, D. Misumi, J. Sudhalter, K. Kobayashi, D. Wroblewski, C. Lynch, M. Baldassare, I. Hiles, J. B. Davis, J. J. Hsuan, N. F. Totty, M. Otsu, R. N. Mcburney, M. D. Waterfield, P. Stroobant & D. Gwynne (1993) Glial Growth-Factors Are Alternatively Spliced Erbb2 Ligands Expressed in the Nervous-System. Nature, 362, 312-318. 82. Matheson, S. L., A. M. Shepherd, R. M. Pinchbeck, K. R. Laurens & V. J. Carr (2013) Childhood adversity in schizophrenia: a systematic meta-analysis. Psychological Medicine, 43, 225-238. 83. McCutcheon, J. E. & M. Marinelli (2009a) Age matters. European Journal of Neuroscience, 29, 997-1014. --- (2009b) Age matters. Eur J Neurosci, 29, 997-1014. 84. Mei, L. & W. C. Xiong (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature Reviews Neuroscience, 9, 437-452. 85. Meyer, D. & C. Birchmeier (1995) Multiple Essential Functions of Neuregulin in Development (Vol 378, Pg 386, 1995). Nature, 378, 753-753. 86. Millar, J. K., J. C. Wilson-Annan, S. Anderson, S. Christie, M. S. Taylor, C. A. M. Semple, R. S. Devon, D. M. St Clair, W. J. Muir, D. H. R. Blackwood & D. J. Porteous (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415-1423. 87. Mirnics, K., F. A. Middleton, G. D. Stanwood, D. A. Lewis & P. Levitt (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry, 6, 293-301. 88. Mirzadeh, Z., F. T. Merkle, M. Soriano-Navarro, J. M. Garcia-Verdugo & A. Alvarez-Buylla (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 3, 265-78. 89. Morshead, C. M., A. D. Garcia, M. V. Sofroniew & D. van Der Kooy (2003) The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci, 18, 76-84. 90. Newbern, J. & C. Birchmeier (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol, 21, 922-8. 91. Newell, K. A., T. Karl & X. F. Huang (2013) A neuregulin 1 transmembrane domain mutation causes imbalanced glutamatergic and dopaminergic receptor expression in mice. Neuroscience, 248, 670-80. 92. Olayioye, M. A., D. Graus-Porta, R. R. Beerli, J. Rohrer, B. Gay & N. E. Hynes (1998) ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol, 18, 5042-51. 93. Parras, C. M., R. Galli, O. Britz, S. Soares, C. Galichet, J. Battiste, J. E. Johnson, M. Nakafuku, A. Vescovi & F. Guillemot (2004) Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J, 23, 4495-505. 94. Patterson, P. H. (2009) Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behavioural Brain Research, 204, 313-321. 95. Paus, T., M. Keshavan & J. N. Giedd (2008) OPINION Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947-957. 96. Quinones-Hinojosa, A. & K. Chaichana (2007) The human subventricular zone: a source of new cells and a potential source of brain tumors. Exp Neurol, 205, 313-24. 97. Quinones-Hinojosa, A., N. Sanai, M. Soriano-Navarro, O. Gonzalez-Perez, Z. Mirzadeh, S. Gil-Perotin, R. Romero-Rodriguez, M. S. Berger, J. M. Garcia-Verdugo & A. Alvarez-Buylla (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol, 494, 415-34. 98. Rakic, P. (2002) Adult neurogenesis in mammals: An identity crisis. Journal of Neuroscience, 22, 614-618. 99. Raponi, E., F. Agenes, C. Delphin, N. Assard, J. Baudier, C. Legraverend & J. C. Deloulme (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia, 55, 165-77. 100. Reif, A., S. Fritzen, M. Finger, A. Strobel, M. Lauer, A. Schmitt & K. P. Lesch (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry, 11, 514-22. 101. Reynolds, B. A. & S. Weiss (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255, 1707-10. 102. Reznikov, K. Y. (1991) Cell proliferation and cytogenesis in the mouse hippocampus. Adv Anat Embryol Cell Biol, 122, 1-74. 103. Rio, C., H. I. Rieff, P. M. Qi & G. Corfas (1997) Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron, 19, 39-50. 104. Romanko, M. J., R. P. Rothstein & S. W. Levison (2004) Neural stem cells in the subventricular zone are resilient to hypoxia/ischemia whereas progenitors are vulnerable. Journal of Cerebral Blood Flow and Metabolism, 24, 814-825. 105. Rousselot, P. & F. Nottebohm (1995) Expression of polysialylated N-CAM in the central nervous system of adult canaries and its possible relation to function. J Comp Neurol, 356, 629-40. 106. Sawamoto, K., H. Wichterle, O. Gonzalez-Perez, J. A. Cholfin, M. Yamada, N. Spassky, N. S. Murcia, J. M. Garcia-Verdugo, O. Marin, J. L. Rubenstein, M. Tessier-Lavigne, H. Okano & A. Alvarez-Buylla (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 311, 629-32. 107. Schiffer, H. H. (2002) Glutamate receptor genes: susceptibility factors in schizophrenia and depressive disorders? Mol Neurobiol, 25, 191-212. 108. Shalev, A. Y., M. Bloch, T. Peri & O. Bonne (1998) Alprazolam reduces response to loud tones in panic disorder but not in posttraumatic stress disorder. Biol Psychiatry, 44, 64-8. 109. Shen, Q., S. K. Goderie, L. Jin, N. Karanth, Y. Sun, N. Abramova, P. Vincent, K. Pumiglia & S. Temple (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304, 1338-40. 110. Shenoy, S., N. Dhawan & J. S. Sandhu (2012) Effect of Exercise Program and Calcium Supplements on Low Bone Mass among Young Indian Women- A Comparative Study. Asian J Sports Med, 3, 193-9. 111. Shenoy, S,. L. Mohan, Saravanan, Kumar, and Anand Ramani (2011) A comparative study of the effect of Ondansetron, Granisetron, and Alprazolam on anxiety in Wistar rats. International Journal of applied Biology and Pharmaceutical techology. Volume: 2: Issue-3: July-Sept -2011 112. Si, J., D. S. Miller & L. Mei (1997) Identification of an element required for acetylcholine receptor-inducing activity (ARIA)-induced expression of the acetylcholine receptor epsilon subunit gene. J Biol Chem, 272, 10367-71. 113. Snodgrass-Belt, P., J. L. Gilbert & F. C. Davis (2005) Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain Res, 1038, 171-82. 114. Spassky, N., F. T. Merkle, N. Flames, A. D. Tramontin, J. M. Garcia-Verdugo & A. Alvarez-Buylla (2005) Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci, 25, 10-8. 115. Stefansson, H., J. Sarginson, A. Kong, P. Yates, V. Steinthorsdottir, E. Gudfinnsson, S. Gunnarsdottir, N. Walker, H. Petursson, C. Crombie, A. Ingason, J. R. Gulcher, K. Stefansson & D. St Clair (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet, 72, 83-7. 116. Stefansson, H., E. Sigurdsson, V. Steinthorsdottir, S. Bjornsdottir, T. Sigmundsson, S. Ghosh, J. Brynjolfsson, S. Gunnarsdottir, O. Ivarsson, T. T. Chou, O. Hjaltason, B. Birgisdottir, H. Jonsson, V. G. Gudnadottir, E. Gudmundsdottir, A. Bjornsson, B. Ingvarsson, A. Ingason, S. Sigfusson, H. Hardardottir, R. P. Harvey, D. Lai, M. D. Zhou, D. Brunner, V. Mutel, A. Gonzalo, G. Lemke, J. Sainz, G. Johannesson, T. Andresson, D. Gudbjartsson, A. Manolescu, M. L. Frigge, M. E. Gurney, A. Kong, J. R. Gulcher, H. Petursson & K. Stefansson (2002) Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877-892. 117. Steiner, H., M. Blum, S. T. Kitai & P. Fedi (1999) Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Experimental Neurology, 159, 494-503. 118. Steinthorsdottir, V., H. Stefansson, S. Ghosh, B. Birgisdottir, S. Bjornsdottir, A. C. Fasquel, O. Olafsson, K. Stefansson & J. R. Gulcher (2004) Multiple novel transcription initiation sites for NRG1. Gene, 342, 97-105. 119. Straub, R. E., Y. Jiang, C. J. MacLean, Y. Ma, B. T. Webb, M. V. Myakishev, C. Harris-Kerr, B. Wormley, H. Sadek, B. Kadambi, A. J. Cesare, A. Gibberman, X. Wang, F. A. O'Neill, D. Walsh & K. S. Kendler (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet, 71, 337-48. 120. Takasawa, K., K. Kitagawa, Y. Yagita, T. Sasaki, S. Tanaka, K. Matsushita, T. Ohstuki, T. Miyata, H. Okano, M. Hori & M. Matsumoto (2002) Increased proliferation of neural progenitor cells but reduced survival of newborn cells in the contralateral hippocampus after focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 22, 299-307. 121. Tanaka, T., F. F. Serneo, H. C. Tseng, A. B. Kulkarni, L. H. Tsai & J. G. Gleeson (2004) Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration. Neuron, 41, 215-27. 122. Tandon, R., M. S. Keshavan & H. A. Nasrallah (2008) Schizophrenia, 'just the facts' what we know in 2008. 2. Epidemiology and etiology. Schizophr Res, 102, 1-18. 123. Toriyama, M., N. Mizuno, T. Fukami, T. Iguchi, M. Toriyama, K. Tago & H. Itoh (2012) Phosphorylation of doublecortin by protein kinase A orchestrates microtubule and actin dynamics to promote neuronal progenitor cell migration. J Biol Chem, 287, 12691-702. 124. Toro, C. T. & J. F. W. Deakin (2007) Adult neurogenesis and schizophrenia: A window on abnormal early brain development? Schizophrenia Research, 90, 1-14. 125. van Os, J. & S. Kapur (2009) Schizophrenia. Lancet, 374, 635-645. 126. Vita, A., L. De Peri, C. Silenzi & M. Dieci (2006) Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res, 82, 75-88. 127. Wang, H., C. Li, H. Wang, F. Mei, Z. Liu, H. Y. Shen & L. Xiao (2013) Cuprizone-induced demyelination in mice: age-related vulnerability and exploratory behavior deficit. Neurosci Bull, 29, 251-9. 128. Wang, R and Yin, H.S.(2010) Effects of partial deletion in Neuregulin-1 gene on adult olfactory neurogenesis in mice. NTU Master Thesis. 129. Weickert (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect, (vol 57, pg 907, 2000). Archives of General Psychiatry, 57, 1122-1122. 130. Wen, D. Z., E. Peles, R. Cupples, S. V. Suggs, S. S. Bacus, Y. Luo, G. Trail, S. Hu, S. M. Silbiger, R. Benlevy, R. A. Koski, H. S. Lu & Y. Yarden (1992) Neu Differentiation Factor - a Transmembrane Glycoprotein Containing an Egf Domain and an Immunoglobulin Homology Unit. Cell, 69, 559-572. 131. Wen, L., Y. S. Lu, X. H. Zhu, X. M. Li, R. S. Woo, Y. J. Chen, D. M. Yin, C. Lai, A. V. Terry, A. Vazdarjanova, W. C. Xiong & L. Mei (2010) Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 107, 1211-1216. 132. Wolpowitz, D., T. B. Mason, P. Dietrich, M. Mendelsohn, D. A. Talmage & L. W. Role (2000) Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron, 25, 79-91. 133. Wong, A. H. C. & H. H. M. Van Tol (2003) Schizophrenia: from phenomenology to neurobiology. Neuroscience and Biobehavioral Reviews, 27, 269-306. 134. Xiong, K., Y. Cai, X. M. Zhang, J. F. Huang, Z. Y. Liu, G. M. Fu, J. C. Feng, R. W. Clough, P. R. Patrylo, X. G. Luo, C. H. Hu & X. X. Yan (2010) Layer I as a putative neurogenic niche in young adult guinea pig cerebrum. Mol Cell Neurosci, 45, 180-91. 135. Xiong, K., D. W. Luo, P. R. Patrylo, X. G. Luo, R. G. Struble, R. W. Clough & X. X. Yan (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol, 211, 271-82. 136. Yang (1998) A cysteine-rich isoform of neuregulin controls the level of expression of neuronal nicotinic receptor channels during synaptogenesis (vol 20, pg 255, 1998). Neuron, 20, U17-U17. 137. Yin, H.S., D. Lee, Y.M. Chih, W.M. Fu, H.G, Hwu (2013) Effects of Neuregulin-1 gene mutation on adult neurogenesis of dorsal and ventral dentate gyrus. Itlia poster. 138. Zhang, D. X., M. X. Sliwkowski, M. Mark, G. Frantz, R. Akita, Y. Sun, K. Hillan, C. Crowley, J. Brush & P. J. Godowski (1997) Neuregulin-3 (NRG3): A novel neural tissue-enriched protein that binds and activates ErbB4. Proceedings of the National Academy of Sciences of the United States of America, 94, 9562-9567 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60677 | - |
dc.description.abstract | 已知出生後哺乳動物的腦室下區 (Subventricular zone, SVZ)可以持續進行神經細胞新生。當腦組織受傷,SVZ新生的神經細胞可能會取代受損的細胞。SVZ的細胞會表現Neuregulin1 (神經生長素, Nrg1)及它的受體ErbB4,顯示Nrg1可能影響SVZ神經細胞的生長及遷移等。故本論文探討Nrg1基因變異對發育中小鼠SVZ細胞的增生與分化的影響。
本實驗使用年輕(出生後四週)和成熟(出生後八週)的野生型 (wild type, WT)及Nrg1基因變異小鼠 (Exon9 mutant, 129S1-Nrg1tm1Lex)進行實驗。開放空間行為顯示,成熟Nrg1變異小鼠在中央停留時間比野生型小鼠多66%,在周邊行走距離比野生型小鼠少11%。此結果指出變異小鼠可能較遲鈍,不夠警覺。 形態方面,我們使用免疫染色法 (immunohistochemistry)觀察SVZ細胞增生及分化的情形。將小鼠連續三天,一天一次注射Bromodeoxyuridine (BrdU),150 mg/Kg,第四天 (D4)及第十天 (D10) 將小鼠灌流犧牲,並將其腦部以石蠟包埋並製備冠狀切片,以供Nissl及免疫染色。根據圖譜,將小鼠額葉 (frontal region)分成前段 (anterior)、中段 (middle)及後段 (posterior)。SVZ則分成背外側腦室下區 (dorsolateral SVZ, DLSVZ)及紋狀體腦室下區 (striatal SVZ, SSVZ)。 我們發現,第四天的年輕Nrg1變異小鼠,額葉前段與中段的DLSVZ,BrdU細胞數目比野生型小鼠少30%與32%,後段卻比野生型小鼠多59%。但是第十天的變異小鼠SVZ的BrdU細胞數目類似野生型小鼠。第四天的成熟變異小鼠額葉前、中與後段的 DLSVZ,BrdU細胞數目比野生型小鼠少 34%、 49%和 36%;額葉前、中與後段的SSVZ,BrdU細胞數目也比野生型小鼠少 40%、32%和38%。第十天的成熟變異小鼠的SVZ,BrdU細胞數目類似野生型小鼠。此外,成熟變異小鼠在額葉前段的第十天新生細胞數量佔第四天的百分比為DLSVZ 72.85%和SSVZ 101.52%,比野生型小鼠41.04%和66.05%多,在額葉中段DLSVZ 64.51%也比野生型小鼠 38.38%多。 BrdU注射後第四天或第十天的年輕Nrg1變異小鼠,在胼胝體 (Corpus callosum, CC)的BrdU細胞數目類似野生型小鼠。第四天的成熟Nrg1變異小鼠,額葉體感覺皮質下方的胼胝體新生細胞數量比野生型小鼠多65%~81%,顯示Nrg1變異可能降低成熟小鼠從SVZ遷移至胼胝體的新生細胞數量。 我們使用Doublecortin (DCX),存在於神經母細胞內的一種細胞骨架蛋白,的抗體標誌未成熟的神經母細胞。年輕Nrg1變異小鼠額葉前與中段的DLSVZ的DCX染色強度 (optical density, OD)值,比野生型小鼠低約12%和13%。成熟變異小鼠額葉前與中段的DLSVZ和SSVZ的DCX OD值,也比野生型小鼠低11%~19%。 使用免疫組織化學雙重染色法發現,在SVZ,不論年輕或成熟的變異或野生型小鼠,BrdU細胞表現DCX或Glial fibrillary acidic protein (GFAP, 星狀細胞)的標誌蛋白,但是沒有表現腦室細胞的特定蛋白質(S100-β)。 年輕Nrg1變異小鼠前後肢體感覺皮質 (Hind- and Forelimb cortex)的第四層,DCX細胞數目比野生型小鼠多53%,成熟變異小鼠的前後肢體感覺皮質與桶狀皮質(Barrel cortex)的第四層,DCX細胞數也比野生型小鼠多106%和89%。這些結果顯示Nrg1變異使得此區出現更多神經母細胞,這些細胞的來源可能是SVZ,此區內的血管,或其它。使用雙重染色法發現,不論年輕或成熟的變異或野生型小鼠,在體感覺皮質,有些DCX細胞也表現GAD67蛋白質。 Nrg1變異導致小鼠在開放空間行為表現異常,指出Nrg1可能影響小鼠的焦慮情緒。變異小鼠SVZ和胼胝體的新生細胞數量減少,指出SVZ細胞的增生與遷移可能受到Nrg1變異的影響,其影響似乎隨動物年紀不同而有差異。體感覺皮質的神經母細胞數目反而在變異小鼠上升 | zh_TW |
dc.description.abstract | It is known that the subventricular zone (SVZ) of postnatal mammalian animals can keep on undergoing neurogenesis. The newborn neurons generated in SVZ may replace injured cells in nervous tissue. The cells of SVZ can express neuregulin 1 (Nrg1), a key growth factor in neural development, and its receptor ErbB4, indicating roles of Nrg1 in the growth and migration of newly formed cells of SVZ. Thus, this study aimed to examine the effects of Nrg1 gene mutation on the neurogenesis of SVZ.
The postnatal 4 week (young) and 8 week (adult) old wild type and Nrg1 gene mutated (Exon9 mutant, 129S1-Nrg1tm1Lex)mice were used for the experiments. Open field behavioral observation revealed that adult Nrg1 mutant mice stayed for a relatively longer period of time in the center area than WT mice, and had less moving distance in the peripheral area. This points to that the mutant mice may be less anxious and alert than that of WT mice. The proliferation of cells in SVZ was studied by injecting bromodeoxyuridine (BrdU) to mice and detecting the newly formed cells using immunohistochemistry with the anti-BrdU antibody. BrdU was intraperitoneally injected to the mice, at 150 mg/kg, once each day for 3 days and the mice were sacrificed on day 4 (D4) and day 10 (D10). Coronal paraffin sections of the brains were prepared. On D4, the numbers of BrdU-immunopositive cells were decreased by 30% and 32% in the anterior and posterior frontal portions, while increased 59% in the posterior portion of the dorsal lateral SVZ (DLSVZ) of the young mutant mice, compared with respective areas of WT mice. For adult mutant mice, on D4, decreases in the numbers of BrdU cells were in the DLSVZ, 34%, 49%, and 36% in the anterior, middle and posterior frontal portions, and 40%, 32% and 38% in the three portions of SSVZ. On D10, the numbers of BrdU cells were similar in the mutant SVZ to that of WT of both ages. Higher percentages of D4 cells remained on D10 anterior DLSVZ 72.85%, SSVZ 101.52%, and middle DLSVZ 64.51% in the adult mutant mice than WT 41.04%, 66.05%, and 38.38%, implying a lower migration rate of the cells in the mutant. On D4, the mature mutant mice had 65~81% lower numbers of BrdU cells in the corpus callosum beneath the somatosensory cortex in the different portions of frontal lobe, compared to WT. This implicates that mutation of Nrg1 gene may lower the number of newborn cells in the corpus callosum that were probably migrated from SVZ. The staining levels of doublecortin (DCX) were decreased by 11-19% in anterior and middle DLSVZ of young mutant mice, and anterior and middle DLSVZ and SSVZ of adult mice. It is likely that the reduced level of DCX in the neuroblasts could indicate a decreased ability of the cells to undergo migration. Double immunostaining showed that BrdU cells expressed DCX or glial fibrillary acidic protein (GFAP), but not S100-beta, a specific marker of ependymal cells. In the young mutant mice, the number of DCX-positive cells was 53% higher in the layer 4 of hind and forelimb somatosensory cortex (SSC), compared to that of WT. The numbers of DCX cells were also increased by 106% and 89% in the layer 4 of hind-forelimb SSC and barrel cortex in the adult mutant mice. It appears that the Nrg1 gene mutation increased the number of neuroblasts in SSC, but the source of the increased cells remains unknown, although they may come from SVZ, local blood vessels or other sources. A number of DCX-cells also expressed GAD67 in layers of SSC of both Mut and WT. The Nrg1 gene mutation induced abnormality of the mice in the open field behavior and thus may affect the state of anxiety of the animals. The newly formed cells were generally decreased in number in SVZ and corpus callosum, implying age-dependently altered proliferation and migration of the progenitors in SVZ. By contrast, the number of neuroblasts was increased in mutant SSC. These morphological changes may play certain roles in the manifestation of the abnormal behavior, because the neurogenesis of SVZ is closely associated with the physiology of olfactory bulb, SSC and striatum, the emotional limbic structures. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:25:44Z (GMT). No. of bitstreams: 1 ntu-102-R99446009-1.pdf: 6420251 bytes, checksum: 58cffeabc43e640e1d8125bc85600435 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract IV 一、緒論: 1 (一)、腦室下區 (subventricular zone, SVZ)與神經細胞新生: 1 (A). SVZ的神經細胞新生與遷移的重要性: 1 (B). SVZ的細胞結構 2 (二)、Nrg1與神經細胞新生及細胞遷移 4 (三)、Nrg1基因與精神分裂症(Schizophrenia) 5 (A). Nrg1基因介紹 5 (B).精神分裂症 6 (C).精神分裂症與遺傳基因 7 (四). Nrg1基因變異小鼠 8 (五)、假說與目的 9 二、附圖說明: 11 三、材料與方法 19 (一)、實驗動物 19 (二)、動物行為實驗 19 (三)、動物處理 19 (四)、 灌流 (perfusion)、固定 (fixation)與腦組織石蠟包埋 (paraffin embedding)的制備 20 (五)、免疫組織化學染色 (immunohistochemistry stain, IHC): 22 (六)、觀察與照相 24 (七)、定量統計與分析 25 四、結果 27 (A). 小鼠體重與開放空間行為實驗 27 (B). Nrg1基因變異對SVZ新生細胞的影響 28 (C). Nrg1基因變異對小鼠DLSVZ和SSVZ DCX免疫染色的影響 32 (D). Nrg1基因變異對於DCX正染色細胞在年輕與成熟小鼠體感覺皮質(Somatosensory cortex,SSC)的影響 34 (E). Nrg1基因變異對於BrdU正染色細胞數目在年輕和成熟小鼠胼胝體(Corpus callosum, CC)的影響 36 (F). Nrg1基因變異對於DCX正染色細胞數目在年輕和成熟小鼠CC的影響: 40 (G). 雙染免疫染色實驗結果 40 五、討論 42 六、參考資料 49 七、表格(Table) 61 八、 78 九、Supplemental data 115 | |
dc.language.iso | zh-TW | |
dc.title | 神經調節素1基因的變異對小鼠腦室下區及感覺皮質神經細胞新生的影響 | zh_TW |
dc.title | Effects of Neuregulin1 Gene Mutation on Neurogenesis of Mouse Subventricular Zone and Somatosensory Cortex | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡海國(Hai-Gwo Hwu),符文美(Wen-Mei Fu),李立仁(Li-Jen Lee) | |
dc.subject.keyword | Nrg1,背外側腦室下區,紋狀體腦室下區,BrdU,DCX, | zh_TW |
dc.subject.keyword | Neuregulin1 (Nrg1),subventricular zone (SVZ),dorsolateral SVZ (DLSVZ),striatal SVZ (SSVZ), | en |
dc.relation.page | 116 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-15 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 6.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。