Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60669
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松
dc.contributor.authorTuan-Chun Chenen
dc.contributor.author陳端駿zh_TW
dc.date.accessioned2021-06-16T10:25:26Z-
dc.date.available2018-08-27
dc.date.copyright2013-08-27
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation一、中文文獻
[1] 張慈映(2012),掌握健康,實現個人化預防醫學情境!mHealth產業趨勢分析,IEK 產業服務-產業情報網。
[2] 張慈映(2009),心電圖計應用市場分析,IEK 產業服務-產業情報網。
[3] 郭沛欣(2009),遠距醫療照護服務之雲端運算應用初探,資策會MIC產業情報研究所。
[4] 黃裕斌(2012),由2012國際消費電子展CES窺探mHealth發展現況,IEK 產業服務-產業情報網。
[5] 原著Nora Goldshlager、Mervin J. Goldman,編譯廖述朗,臨床心電圖學,藝軒圖書出版社,1999年9月.
[6] 楊銘燿、徐良育、胡威志、張恆雄、高材,”利用小波轉換與類神經網路進行心電圖特徵擷取與病症分類”,中華醫學工程期刊第17 卷第四期,第265-266 頁,民國86年12月。
[7] 王群光, ”自律神經失調HRV檢測及治療衛教手冊”, 2010。

二、英文文獻
[8] Malcolm S. Thaler, “The only EKG book you'll ever need (3e)”, 2002.
[9] V. Di-Virgilio, C. Francaiancia, S. Lino, and S. Cerutti, “ECG fiducial points detection through wavelet transform,” in 1995 IEEE Eng. Med. Biol. 17th Ann. Conf. 21st Canadian Med. Biol. Eng. Conf., Montreal, Quebec, Canada, 1997, pp. 1051-1052.M.S.
[10] Jaakko Malmivuo and Robert Plonsey, Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, New York, 1995.
[11] Lippincott Williams & Wilkins,“Cardiovascular Physiology Concepts Second Edition” , 2011.
[12] Bert-Uwe Kohler, Carsten Hennig, Reinhold Orglmeister, “The Principles of Software QRS Detection.” , IEEE, 2002
[13] Jiapu Pan and Willis J. Tompkins, “A real-time QRS detection algorithm”, 1985, IEEE Trans. Biomed. Eng., vol. 32, pp. 230-236, 1985.
[14] H. H. So and K. L. Chant, “Development of QRS detection method for real-time ambulatory cardiac monitor.”, IEEE/EMBS, 1997.
[15] K. F. Tan, K. L. Chan’, and K. Choi , “Detection of the QRS complex, P wave and T wave in electrocardiogram.”, Advances in Medical Signal and Information Processing, 2000. First International Conference on (IEEE Conf. Publ. No. 476).
[16] Dib. Nabil and F. Bereksi-Reguig , “Algorithm for automatic detection of ECG waves.”, Journal of Mechanics in Medicine and Biology, 2011
[17] Ivaylo I. Christov and Todor V. Stoyanov, “Steep slope method for real time QRS detection.”, Electrotechniques & Electronics “E+E”, 1-2/2002.
[18] S. Mallat and W.L. Hwang, “Zero-crossing of a Wavelets- transform” , IEEE Trans. Inform. Theory, Vol 37, No.4, pp 1019-1033., 1991
[19] L. Cuiwei, Z. Chongxun, T. Changfeng, “Detection of ECG characteristic points using wavelet transforms, “IEEE Trans. Biomed. Eng., Vol. 42, No. 1, pp 21-28. , 1995
[20] M. Bahoura, M. Hassani, and M. Hubin, “DSP implementation of wavelet transform for real-time ECG wave-forms detection and heart rate analysis,” Comput. Methods Programs Biomed., vol.52, no. 1, pp. 35-44, 1997.
[21] V. Di-Virgilio, C. Francaiancia, S. Lino, and S. Cerutti, “ECG fiducial points detection through wavelet transform,” in 1995 IEEE Eng. Med. Biol. 17th Ann. Conf. 21st Canadian Med. Biol. Eng. Conf., Montreal, Quebec, Canada, 1997, pp. 1051-1052.M.S.
[22] Woolfsion, ”Study of cardiac arrhythmia using zero-crossing”, Journal of Biomedical Engineering, vol.11, pp.303-309, 1985.
[23] P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K, “Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus”, International Journal of Biological and Life Sciences, 2008.
[24] Perini, R; Orizio, C; Baselli, G, et al. , “The influence of exercise Intensity on the power spectrum of heart rate variability.”, European Journal of Applied Physiology and Occupational Physiology Volume: 61 Issue: 1-2 Pages: 143-148, 1990.
[25] Michael Cerna and Audrey F. Harvey, “The Fundamentals of FFT-Based Signal Analysis and Measurement”.
[26] Kuo TB, Lin T, Yang CC, Li CL, Chen CF, Chou P. “Effect of aging on gender differences in neural control of heart rate”, Am J Physiol. 1999 Dec; 277(6Pt 2):H2233-9.
[27] Medicore, “Heart Rate Variability Analysis System Clinical Information version 3.0”.
[28] Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell'Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A , “Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and in conscious dog”, Circ Res 59:178-193, 1986.
[29] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database. IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001). (PMID: 11446209)
[30] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220[Circulation Electronic Pages ; 2000
[31] Task Force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology(1996),Heart rate variability standard of measurement, physiology interpretation, and clinical use, European Heart Journal Vol.17
[32] Lipsitz LA, Hashimoto F, Lubowsky LP, Mietus J, Moody GB, Appenzeller O, and Goldberger AL. Heart rate and respiratory rhythm dynamics on ascent to high altitude. British Heart Journal 74(4):390-396 (October 1995).
[33] Texas Intrusments, “Heart-Rate and EKG Monitor Using the MSP430FG439”, 2007 revised.
[34] George B.Moody, Roger G. Mark, Andrea Zoccola, and Sara Mantero, “Derivation of Respiratory Signals from Multi-lead ECGs”, Computers in Cardiology 1985, vol. 12, pp.113-116.
[35] P. Sasikala, Dr.R.S.D. Wahidabanu “Robust R Peak and QRS detection in Electrocardiogram using Wavelet Transform”, IJACSA, 2010.
[36] Gary M. Friesen, Thomas C, et al. “A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms” IEEE Transactions on biomedical engineering, vol 37. No.1, January 1990.
[37] Zahoor-uddin, Farooq Alam Orakzai, “Baseline Wandering Removal from Human Electrocardiogram Signal using Projection Pursuit Gradient Ascent Algorithm”, IJECS/IJENS Vol: 9 No: 9.
[38] KEN UMETANI, MD, DONALD H. SINGER, MD, FACC,ROLLIN MCCRATY, MS, MIKE ATKINSON, “Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nine Decades”, J Am Coll Cardiol. 1998 Mar 1;31(3):593-601.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60669-
dc.description.abstract近幾年智慧型行動裝置市場呈現爆炸性成長,並已逐漸改變消費者既有之生活型態與使用習慣。資通訊技術的快速變化,也帶動了行動醫療與預防醫學的發展,學者預估以往疾病治療的支出比重也將由2007年的70%減少至2025年的35%,預防監測的支出比重則將日益增加。醫療服務地點也將由醫療院所逐漸分散至診所、家庭與個人,院外的連續監測與個人健康管理將愈趨重要。
傳統心電圖監測多為病人在醫院靜躺在床上所做的靜態心電圖,且必須由醫護人員操作複雜的醫療儀器進行監測。直到為了連續監測,而開始使用24小時心電圖監測器,自始心電圖監測開始行動化,不再限制於醫院做監測。
1996年歐美醫學專家制定了心率變異度(Heart Rate Variability, HRV),為監控個人自律神經健康程度的一個最重要指標,自律神經健康程度與我們日常生活品質息息相關。透過心率變異度分析判斷自律神經健康,使得心電圖監測不再只是在醫院內疾病治療時的工具,而是隨時隨地觀察個人健康狀況的重要工具。
然而傳統心電圖監測方式使得心電圖監測並未能普及,不但每次量測需要耗材,在操作上更必須有專業知識醫護人員在旁輔助教學。因此本研究為了改善此狀況,讓心電圖的監測真正普及化,提出以穿戴式裝置實現隨時隨地監測心電圖。但捨棄傳統導極貼片式量測方式,卻為自動化心電圖波形偵測帶來相當的困難,導致過去的偵測方法並不適用,因此偵測方法的改進為本研究之重點所在。
本研究建構一完整個人健康管理平台,透過隨時隨地心率變異度分析,並隨時上傳資料與透過雲端檢視歷史資料,幫助個人作自律神經健康之管理。主要提出一改良式自動化偵測QRS波方法,克服穿戴式裝置量測心電圖時,自動化心電圖波形偵測的困難,包括訊號微弱造成雜訊較大與量測中晃動造成不正常的波形產生等等,以真正實現穿戴式裝置心電圖量測量測,同時更利用心源性呼吸方式(EDR, ECG Derived Respiration)加入了即時呼吸變化偵測機制,增加此健康管理平台的發展性。
zh_TW
dc.description.abstractIn recent years, smart mobile devices market showed explosive growth, and has gradually changed both the consumer lifestyle and habits. Rapid changes in information and communication technology, has also led to action the development of medical and preventive medicine. Scholars estimate the proportion of the expenditure in the past treatment of disease will also be reduced FROM 70% in 2007 to 35% in 2025, instead preventive monitoring will be an increasing proportion of the expenditure. Also, Medical service locations will also be gradually dispersed to hospitals clinics, family and individual, and the individual's self-monitoring and health management will become increasingly valued.
In traditional ECG monitoring, patients has to lie on hospital bed, and the complex medical instruments must operate by healthcare professionals. Not until there are 24-hour ECG monitors (Holter) for some patients to do the continuous monitoring, the ECG monitoring can only be done in hospital.
In 1996 Western medical experts have developed the HRV (Heart Rate Variability, HRV) being the most important indicator of health of ANS (Autonomic Nervous System). Health of autonomic nervous system and is closely related to the quality of our daily lives. It is because that through the Analysis of heart rate variability can observe autonomic nervous system health, making ECG monitoring is no longer just a tool for disease treatment in the hospital but a important tool for personal health management anytime and anywhere.
However, the traditional way of making electrocardiographic monitoring ECG monitoring did not spread to the world, not only because every single time monitoring needs consumables but it must have experts beside for operate. Therefore, this study in order to improve this situation, and let ECG monitoring truly universal, has proposed the wearable ECG monitoring device, achieving HRV measurements at any time to help individuals manage the autonomic nervous system health. But not using the traditional patch type measurement method causes considerable difficulties to the automated detection of the ECG waveform and led past detection methods do not apply.
This study constructed a complete personal health management platform to help individuals make the autonomic nervous system health management through Heart rate variability analysis at anywhere and anytime. Also it can upload data and view historical data through the cloud server. Mainly proposed an improved automated detection method of QRS complex to overcome the difficulties occurred when using wearable device to monitor ECG, including weak signal and moving when measuring. In addition, immediate breathing change detection, which is implemented by EDR (ECG Derived Respiration), is added on the platform to increase the Expansibility of this health management platform.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:25:26Z (GMT). No. of bitstreams: 1
ntu-102-R00725039-1.pdf: 3271285 bytes, checksum: 585d0d2734a6872c4810da773e7c055d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 1
摘要 2
Abstract 3
第一章 緒 論 9
第一節、 研究背景 9
一、 預防醫學與行動醫療的快速發展 9
二、 智慧型行動裝置趨勢 10
三、 心電圖計發展 11
四、 心率變異度與自律神經調控 12
第二節、 研究目的 12
第三節、 研究架構 15
第二章 文獻探討 16
第一節、 心電圖 16
一、 心電圖基礎 16
二、 心電圖導程 18
第二節、 自動化偵測心電圖波型 21
一、 數位過濾法(Based on Digital Filters) 22
二、 導數法(Derivative-Based) 23
三、 小波轉換法(Wavelet-based) 23
第三節、 心率變異度(HRV)之相關研究 24
一、 心率變異度 24
二、 時域分析(Time domain analysis) 25
三、 頻域分析(Frequency domain analysis) 26
第四節、 心源性呼吸(EDR, ECG-Derived Respiratory) 27
第五節、 可攜式生理監測應用之市場分類 28
第三章 系統平台與方法介紹 31
第一節、 系統架構與流程 31
第二節、 穿戴式心電圖訊號感測器 (Wearable EKG Sensor) 32
第三節、 智慧行動裝置應用程式(Mobile device App) 34
第四節、 自動化偵測心電圖QRS波 36
一、 基準線飄移過濾器(Baseline-shift filter) 37
二、 不穩定訊號偵測器(Unstable signal detector) 38
三、 QRS偵測器(QRS detector) 40
第五節、 心率變異度量化分析 45
一、 時域分析 45
二、 頻域分析 46
第四章 系統平台與方法驗證 50
第一節、 QRS波偵測演算法標竿驗證 50
一、 MIT-BIH 心律不整(Arrhythmia)資料庫 50
二、 演算法參數調整 51
三、 實驗結果 54
第二節、 QRS波偵測演算法實例驗證 56
一、 驗證結果與討論 57
二、 演算法參數調整 63
第三節、 系統平台標竿驗證 – 與某預防醫學中心作比對 63
一、 預防醫學中心 – 自律神經檢測項目 63
二、 實驗結果 64
第五章 結論與未來發展 67
參考文獻 70
dc.language.isozh-TW
dc.subjectQRS偵測zh_TW
dc.subject健康管理zh_TW
dc.subject心率變異度zh_TW
dc.subject心電圖zh_TW
dc.subjectECGen
dc.subjectElectrocardiographyen
dc.subjectHRVen
dc.subjectHeart rate variabilityen
dc.subjectHealth managementen
dc.subjectQRS detectionen
dc.title心率變異度量測實現雲端個人健康管理平台-
一種改良式心電圖QRS波即時偵測方法
zh_TW
dc.titleA Cloud-based Personal Health Management Platform by Measuring Heart Rate Variability –
An Improved ECG QRS Detection Algorithm
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊賢,趙啟超,莊東穎,尹彙文
dc.subject.keyword心電圖,心率變異度,健康管理,QRS偵測,zh_TW
dc.subject.keywordECG,Electrocardiography,HRV,Heart rate variability,Health management,QRS detection,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2013-08-15
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved