Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6065
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor袁小琀(Hanna S. Yuan)
dc.contributor.authorKuan-Wei Huangen
dc.contributor.author黃冠偉zh_TW
dc.date.accessioned2021-05-16T16:20:18Z-
dc.date.available2015-12-31
dc.date.available2021-05-16T16:20:18Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-05
dc.identifier.citation1. Bailey, S.L., Harvey, S., Perrino, F.W., and Hollis, T. (2012). Defects in DNA degradation revealed in crystal structures of TREX1 exonuclease mutations linked to autoimmune disease. DNA repair 11, 65-73.
2. Barber, G.N. (2011). Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Current opinion in immunology 23, 10-20.
3. Chowdhury, D., Beresford, P.J., Zhu, P.C., Zhang, D., Sung, J.S., Demple, B., Perrino, F.W., and Lieberman, J. (2006). The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Molecular cell 23, 133-142.
4. Deutscher, M.P., Marlor, C.W., and Zaniewski, R. (1984). Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA. Proc Natl Acad Sci U S A 81, 4290-4293.
5. Eckerle, L.D., Becker, M.M., Halpin, R.A., Li, K., Venter, E., Lu, X., Scherbakova, S., Graham, R.L., Baric, R.S., Stockwell, T.B., et al. (2010). Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. Plos Pathog 6, e1000896.
6. Flexner, C. (2007). HIV drug development: the next 25 years. Nature reviews Drug discovery 6, 959-966.
7. Geijtenbeek, T.B. (2010). Host DNase TREX1 hides HIV from DNA sensors. Nature immunology 11, 979-980.
8. Hallick, R.B., Chelm, B.K., Gray, P.W., and Orozco, E.M. (1977). Use of Aurintricarboxylic Acid as an Inhibitor of Nucleases during Nucleic-Acid Isolation. Nucleic Acids Res 4, 3055-3064.
9. Hamdan, S., Carr, P.D., Brown, S.E., Ollis, D.L., and Dixon, N.E. (2002). Structural basis for proofreading during replication of the Escherichia coli chromosome. Structure 10, 535-546.
10. Hastie, K.M., Kimberlin, C.R., Zandonatti, M.A., MacRae, I.J., and Saphire, E.O. (2011a). Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3' to 5' exonuclease activity essential for immune suppression. Proc Natl Acad Sci U S A 108, 2396-2401.
11. Hastie, K.M., Liu, T., Li, S., King, L.B., Ngo, N., Zandonatti, M.A., Woods, V.L., Jr., de la Torre, J.C., and Saphire, E.O. (2011b). Crystal structure of the Lassa virus nucleoprotein-RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci U S A 108, 19365-19370.
12. Horio, T., Murai, M., Inoue, T., Hamasaki, T., Tanaka, T., and Ohgi, T. (2004). Crystal structure of human ISG20, an interferon-induced antiviral ribonuclease. FEBS letters 577, 111-116.
13. Hsiang, C.Y., and Ho, T.Y. (2008). Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. British journal of pharmacology 155, 227-235.
14. Hsiao, Y.Y., Duh, Y., Chen, Y.P., Wang, Y.T., and Yuan, H.S. (2012). How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic Acids Res 40, 8144-8154.
15. Hsiao, Y.Y., Nakagawa, A., Shi, Z., Mitani, S., Xue, D., and Yuan, H.S. (2009). Crystal structure of CRN-4: implications for domain function in apoptotic DNA degradation. Mol Cell Biol 29, 448-457.
16. Hsiao, Y.Y., Yang, C.C., Lin, C.L., Lin, J.L., Duh, Y., and Yuan, H.S. (2011). Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation. Nature chemical biology 7, 236-243.
17. Lee, W., Lee, Y.I., Lee, J., Davis, L.M., Deininger, P., and Soper, S.A. (2010). Cross-Talk-Free Dual-Color Fluorescence Cross-Correlation Spectroscopy for the Study of Enzyme Activity. Anal Chem 82, 1401-1410.
18. Li, Z., Zhan, L., and Deutscher, M.P. (1996). The role of individual cysteine residues in the activity of Escherichia coli RNase T. The Journal of biological chemistry 271, 1127-1132.
19. Manel, N., and Littman, D.R. (2011). Hiding in plain sight: how HIV evades innate immune responses. Cell 147, 271-274.
20. Minskaia, E., Hertzig, T., Gorbalenya, A.E., Campanacci, V., Cambillau, C., Canard, B., and Ziebuhr, J. (2006). Discovery of an RNA virus 3'->5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 103, 5108-5113.
21. Moser, M.J., Holley, W.R., Chatterjee, A., and Mian, I.S. (1997). The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 25, 5110-5118.
22. Nurmohamed, S., Vincent, H.A., Titman, C.M., Chandran, V., Pears, M.R., Du, D., Griffin, J.L., Callaghan, A.J., and Luisi, B.F. (2011). Polynucleotide phosphorylase activity may be modulated by metabolites in Escherichia coli. The Journal of biological chemistry 286, 14315-14323.
23. Parrish, J.Z., and Xue, D. (2003). Functional genomic analysis of apoptotic DNA degradation in C. elegans. Molecular cell 11, 987-996.
24. Prentice, D.A., Kitos, P.A., and Gurley, L.R. (1985). Effects of Phosphatase Inhibitors on Nuclease Activity. Cell Biol Int Rep 9, 1027-1034.
25. Raines, R.T., Smith, B.D., Soellner, M.B., Lynn, D.M. (2005). Nuclease inhibitors and methods for their use. United States patent application publication US 2005/0214839A1
26. Stetson, D.B. (2012). Endogenous retroelements and autoimmune disease. Current opinion in immunology 24, 692-697.
27. Sunaga, S., Kobayashi, T., Yoshimori, A., Shiokawa, D., and Tanuma, S. (2004). A novel inhibitor that protects apoptotic DNA fragmentation catalyzed by DNase gamma. Biochemical and biophysical research communications 325, 1292-1297.
28. Wang, C.C., Tsong, T.Y., Hsu, Y.H., and Marszalek, P.E. (2011). Inhibitor binding increases the mechanical stability of staphylococcal nuclease. Biophysical journal 100, 1094-1099.
29. Wu, M.S., Reuter, M., Lilie, H., Liu, Y.Y., Wahle, E., and Song, H.W. (2005). Structural insight into poly(A) binding and catalytic mechanism of human PARN. Embo Journal 24, 4082-4093.
30. Yamada, Y., Fujii, T., Ishijima, R., Tachibana, H., Yokoue, N., Takasawa, R., and Tanuma, S. (2011). DR396, an apoptotic DNase gamma inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorganic & medicinal chemistry 19, 168-171.
31. Yan, N., Cherepanov, P., Daigle, J.E., Engelman, A., and Lieberman, J. (2009). The SET complex acts as a barrier to autointegration of HIV-1. Plos Pathog 5, e1000327.
32. Yan, N., and Lieberman, J. (2011). Gaining a foothold: how HIV avoids innate immune recognition. Current opinion in immunology 23, 21-28.
33. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A., and Lieberman, J. (2010). The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nature immunology 11, 1005-1013.
34. Yang, W. (2011). Nucleases: diversity of structure, function and mechanism. Quarterly reviews of biophysics 44, 1-93.
35. Zuo, Y., and Deutscher, M.P. (2002). The physiological role of RNase T can be explained by its unusual substrate specificity. The Journal of biological chemistry 277, 29654-29661.
36. Zuo, Y., Zheng, H., Wang, Y., Chruszcz, M., Cymborowski, M., Skarina, T., Savchenko, A., Malhotra, A., and Minor, W. (2007). Crystal structure of RNase T, an exoribonuclease involved in tRNA maturation and end turnover. Structure 15, 417-428.
37. Zuo, Y.H., and Deutscher, M.P. (2001). Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29, 1017-1026.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6065-
dc.description.abstractDnaQ核酸水解外切酶家族由超過萬種蛋白質成員組成,廣泛分布於原核與真核生物中。此家族成員具有一高度保留性3端至5端核酸水解外切酶結構區域,含有5個高度保留性胺基酸。此類核酸水解蛋白質在細胞中主要參與DNA或RNA的代謝,例如DNA的複製,DNA的修復、DNA的降解,或RNA成熟修飾過程。近來研究發現,部分病毒會利用DnaQ核酸水解外切酶家族成員,來幫助自身感染宿主細胞。故篩選抑制劑來抑制DnaQ核酸水解酶的活性,可能有助於抗病毒感染藥物的研發。
本論文使用DnaQ核酸水解外切酶家族成員之一的CRN-4與RNase T做為模型,用以篩選11種可能的核酸水解酶抑制劑。CRN-4核酸水解外切酶的活性實驗結果顯示,相對於其他9種可能的抑制劑而言,4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoicacid 與 5,5'-dithiobis(2-nitrobenzoate) 具有相對較好的抑制效果。而在 RNase T核酸水解外切酶活性實驗中,則是p-chloromercuriphenyl sulfonate 與Aurintricarboxylic acid 具有相對較好的抑制效果。此外根據CRN-4和2-(N-morpholino)ethanesulfonic acid的複合物之晶體結構,顯示出此化合物結合在CRN-4的活性中心位置,造成CRN-4活性中心發生構形變化,而導致CRN-4的核酸水解外切酶活性受到抑制。我們的研究結果顯示篩選的部分化合物,的確可以抑制DnaQ核酸水解外切酶家族成員的活性,然而這些化合物的抑制效果與專一性需要再加改善。
zh_TW
dc.description.abstractThe family of the DnaQ-like exonucleases contains more than ten thousand members widely distributed in prokaryotes and eukaryotes. These exonucleases all contain a highly conserved DEDDh domain with four acidic residues for metal ion binding and one general base residue in the active site. Members in this family play key roles in DNA or RNA metabolism, such as proofreading in DNA replication, DNA processing in DNA repair, DNA degradation in apoptosis and RNA processing in RNA maturation. Recent studies show that several exonucleases in this superfamily are important for viral infections. It is thus important to identify inhibitors for this family of nucleases that may be helpful for the development of anti-viral agents.
Here using CRN-4 and RNase T, members of DnaQ-like exonuclease, as the model system, we screened 11 inhibitor candidates. We found that two compounds, 4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-
benzoicacid and 5,5'-dithiobis(2-nitrobenzoate), could weakly inhibit the exonuclease activity of CRN-4, whereas two compounds, p-chloromercuriphenyl sulfonate and aurintricarboxylic acid, could strongly inhibit the exonuclease activity of RNase T. Moreover, we co-crystallized CRN-4 with one of the weak inhibitors, 2-(N-morpholino)ethanesulfonic acid (MES). The crystal structure of CRN-4 in complex with MES shows that MES was bound in the active site and the general base His179 was flipped out of the active site. In summary, we identified potential inhibitors for the DnaQ-like exonucleases; however, the inhibition activity and specificity of these compounds need to be further improved.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:20:18Z (GMT). No. of bitstreams: 1
ntu-102-R00442026-1.pdf: 3959501 bytes, checksum: e24ba52502add4c42b642f0c7f8364b7 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
中文摘要 1
英文摘要 2
壹、 序論
一、 DnaQ核酸水解外切酶家族 3
二、 DnaQ核酸水解外切酶家族在細胞內所扮演的功能 4
三、 部分病毒利用不同DnaQ核酸水解外切酶家族協助感染宿主 6
四、 研究目的 7
貳、 實驗材料方法
一、 質體及其建構 8
二、 蛋白質表現及純化 8
1. 細菌菌株 8
2. 線蟲CRN-4蛋白質小量表現測試 8
3. 線蟲CRN-4蛋白質大量表現及純化 9
4. 大腸桿菌RNase T蛋白質大量表現及純 11
三、 Thrombin活性測試 12
四、 蛋白質膠體電泳法 12
五、 西方點墨法 12
六、 5端γ-32P放射性同位素標定 13
七、 去氧核醣核酸水解酶活性分析 13
八、 蛋白質結晶與X光繞射數據收集 14
參、 實驗結果
一、 線蟲CRN-4蛋白質小量表現測試 16
二、 線蟲CRN-4蛋白質大量表現及純化 16
三、 大腸桿菌RNase T蛋白質大量表現及純化 17
四、 核酸水解酶活性分析 17
1. CRN-4核酸水解酶活性分析 18
2. RNase T核酸水解酶活性分析 18
五、 MES-CRN-4複合物之結晶與其結構 19
肆、 討論 21
伍、 圖表
表一、DnaQ核酸水解外切酶家族成員 23
表二、十一種已用於研究之核酸抑制劑 24
表三、抑制CRN-4核酸水解外切酶所需之抑制劑濃度 25
表四、抑制RNase T核酸水解外切酶所需之抑制劑濃度 26
表五、MES-CRN-4複合物晶體繞射點資料及模型建立參數 27
圖一、DnaQ核酸水解外切酶家族區域結構比對圖 28
圖二、DnaQ核酸水解外切酶家族的催化機制 29
圖三、DNA-RNase T複合物活性位結構重疊比對圖 30
圖四、HIV病毒利用人類TREX1躲避宿主免疫系統之機制 31
圖五、不同種冠狀病毒具一高度保留核酸水解外切酶區域 32
圖六、LASV病毒之NP蛋白質結構 33
圖七、CRN-4蛋白質小量表現測試 34
圖八、Thrombin切除CRN-4重組蛋白上His-tag的活性測試 35
圖九、CRN-4大量純化結果 36
圖十、RNase T大量純化結果 37
圖十一、CRN-4核酸水解外切酶活性測試 38
圖十二、RNase T核酸水解外切酶活性測試 39
圖十三、MES-CRN-4複合物蛋白質結構 41
圖十四、MES-CRN-4複合物活性位之電子密度圖 42
圖十五、MES-CRN-4複合物的構形變化 43
圖十六、MES-CRN-4與DNA-RNase T複合物結構重疊比對圖 44
陸、 參考文獻 45
dc.language.isozh-TW
dc.titleDnaQ核酸水解外切酶家族之可能的抑制劑之鑑定zh_TW
dc.titleIdentification of the potential inhibitors for the DnaQ-like exonucleasesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹迺立,蕭傳鐙
dc.subject.keywordDnaQ核酸水解外切?家族,核酸水解?抑制劑,CRN-4,RNase T,蛋白質結晶結構,zh_TW
dc.subject.keywordDnaQ-like exonucleases,nuclease inhibitor,CRN-4,RNase T,protein crystal structure,en
dc.relation.page49
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf3.87 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved