請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60642完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳仁治(Jen-Chih Chen),林長平(Chan-Pin Ling) | |
| dc.contributor.author | Yi-Chang Sung | en |
| dc.contributor.author | 宋宜璋 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:24:26Z | - |
| dc.date.available | 2016-08-28 | |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 1. Baulcombe, D. C. 1999. Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant. Biol. 2:109-113.
2. Bergeault, K., Bertsch, C., Merdinoglu, D., and Walter, B. 2010. Low level of polymorphism in two putative NPR1 homologs in the Vitaceae family. Biol. Direct 5:9-21. 3. Boatwright, J. L., and Pajerowska-Mukhtar, K. 2013. Salicylic acid: an old hormone up to new tricks. Mol. Plant Pathol. 1:9-20. 4. Bressan, A., and Purcell, A. H. 2005. Effect of benzothiadiazole on transmission of X-disease phytoplasma by the vector Colladonus montanus to Arabidopsis thaliana, a new experimental host plant. Plant Dis. 89:1121-1124. 5. Brigneti, G., Martin-Hernandez, A. M., Jin, H., Chen, J., Baulcombe, D. C., Baker, B., and Jones, J. D. 2004. Virus-induced gene silencing in Solanum species. Plant J. 39:264-272. 6. Burch-Smith, T. M., Anderson, J. C., Martin, G. B., and Dinesh-Kumar, S. P. 2004. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 39:734-746. 7. Burch-Smith, T. M., Schiff, M., Liu, Y., and Dinesh-Kumar, S. P. 2006. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142:21-27. 8. Cakir, C., Gillespie, M. E., and Scofield, S. R. 2010. Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Sci. 50:S77-S84. 9. Cao, H., Bowling, S. A., Gordon, A. S., and Dong, X. 1994. Characterization of an arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583-1592. 10. Chai, Y. M., Jia, H. F., Li, C. L., Dong, Q. H., and Shen, Y. Y. 2011. FaPYR1 is involved in strawberry fruit ripening. J. Exp. Bot. 62:5079-5089. 11. Chen, J. C., Jiang, C. Z., Gookin, T. E., Hunter, D. A., Clark, D. G., and Reid, M. S. 2004. Chalcone synthase as a reporter in virus-induced gene silencing studies of flower senescence. Plant Mol. Biol. 55:521-530. 12. Chen, Z. X., Malamy, J., Henning, J., Conrath, U., Sanchezcasas, P., Silva, H., Ricigliano, J., and Klessig, D. F. 1995. Induction, modification, and transduction of the salicylic-acid signal in plant defense responses. P. Roc. Natl. Acad. Sci. USA 92:4134-4137. 13. Chern, M., Fitzgerald, H. A., Canlas, P. E., Navarre, D. A., and Ronald, P. C. 2005. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol. Plant-Microbe Ineract. 18:511-520. 14. Chisholm, S. T., Coaker, G., Day, B., and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. 15. Christensen, N. M., Axelsen, K. B., Nicolaisen, M., and Schulz, A. 2005. Phytoplasmas and their interactions with hosts. Trends Plant Sci. 10:526-535. 16. D'Amelio, R., Marzachi, C., and Bosco, D. 2010. Activity of benzothiadiazole on chrysanthemum yellows phytoplasma ('Candidatus Phytoplasma asteris') infection in daisy plants. Crop Prot. 29:1094-1099. 17. Despres, C., DeLong, C., Glaze, S., Liu, E., and Fobert, P. R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279-290. 18. Di Stilio, V. S. 2011. Empowering plant evo-devo: virus induced gene silencing validates new and emerging model systems. Bioessays 33:711-718. 19. Ding, X. S., Rao, C. S., and Nelson, R. S. 2007. Analysis of gene function in rice through virus-induced gene silencing. Methods Mol. Biol. 354:145-160. 20. Ding, X. S., Schneider, W. L., Chaluvadi, S. R., Mian, M. A., and Nelson, R. S. 2006. Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Mol. Plant-Microbe Interact. 19:1229-1239. 21. Doi, Y., Teranaka, M., Tora, K., and Asuyama, H. 1967. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato withces broom, aster yellows, or paulownia witches' broom. AnnU. Rev. Phytopathol. 42:185-209. 22. Dunoyer, P., Himber, C., and Voinnet, O. 2005. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37:1356-1360. 23. Durrant, W. E., and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. 24. Ekengren, S. K., Liu, Y., Schiff, M., Dinesh-Kumar, S. P., and Martin, G. B. 2003. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 36:905-917. 25. Endah, R., Beyene, G., Kiggundu, A., van den Berg, N., Schluter, U., Kunert, K., and Chikwamba, R. 2008. Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol. Bioch. 46:1007-1014. 26. Faivre-Rampant, O., Gilroy, E. M., Hrubikova, K., Hein, I., Millam, S., Loake, G. J., Birch, P., Taylor, M., and Lacomme, C. 2004. Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol. 134:1308-1316. 27. Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H., Tada, Y., Zheng, N., and Dong, X. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228-232. 28. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. 1993. Requirement of salicylic-acid for the induction of systemic acquired-resistance. Science 261:754-756. 29. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293-296. 30. Hartl, M., Merker, H., Schmidt, D. D., and Baldwin, I. T. 2008. Optimized virus-induced gene silencing in Solanum nigrum reveals the defensive function of leucine aminopeptidase against herbivores and the shortcomings of empty vector controls. New Phytol. 179:356-365. 31. Heil, M., and Bostock, R. M. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann. Bot. Lodom. 89:503-512. 32. Hepworth, S. R., Zhang, Y., McKim, S., Li, X., and Haughn, G. W. 2005. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434-1448. 33. Hileman, L. C., Drea, S., Martino, G., Litt, A., and Irish, V. F. 2005. Virus-induced gene silencing is an effective tool for assaying gene function in the basal eudicot species Papaver somniferum (opium poppy). Plant J. 44:334-341. 34. Hogenhout, S. A., Oshima, K., Ammar el, D., Kakizawa, S., Kingdom, H. N., and Namba, S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403-423. 35. Hsieh, M. H., Lu, H. C., Pan, Z. J., Yeh, H. H., Wang, S. S., Chen, W. H., and Chen, H. H. 2013. Optimizing virus-induced gene silencing efficiency with Cymbidium mosaic virus in Phalaenopsis flower. Plant Sci. 201:25-41. 36. Huang, C., Qian, Y., Li, Z., and Zhou, X. 2012. Virus-induced gene silencing and its application in plant functional genomics. Sci. China Life Sci. 55:99-108. 37. Huang, T. J., and Lin, C. P. 2011. Current status on important crop diseases induced by phytoplasmas in Taiwan. Proceedings of the symposium on integrated management technology of insect vectors and insect-borne diseases 152:63-71. 38. Igarashi, A., Yamagata, K., Sugai, T., Takahashi, Y., Sugawara, E., Tamura, A., Yaegashi, H., Yamagishi, N., Takahashi, T., Isogai, M., Takahashi, H., and Yoshikawa, N. 2009. Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407-416. 39. Ishiie, T., Doi, Y., Yora, K., and Asuyama, H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development in mulberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33:267-275. 40. Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., and Grill, L. K. 1995. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. U S A 92:1679-1683. 41. Kunkel, B. N., and Brooks, D. M. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325-331. 42. Landi, L., and Romanazzi, G. 2011. Seasonal variation of defense-related gene expression in leaves from Bois noir affected and recovered grapevines. J. Agr. Food Chem. 59:6628-6637. 43. Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T., and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82. 44. Le Henanff, G., Farine, S., Kieffer-Mazet, F., Miclot, A. S., Heitz, T., Mestre, P., Bertsch, C., and Chong, J. 2011. Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405-417. 45. Liscombe, D. K., and O'Connor, S. E. 2011. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969-1977. 46. Liu, G., Holub, E. B., Alonso, J. M., Ecker, J. R., and Fobert, P. R. 2005. An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J. 41:304-318. 47. Liu, Y., Schiff, M., and Dinesh-Kumar, S. P. 2002. Virus-induced gene silencing in tomato. Plant J. 31:777-786. 48. Liu, Y., Schiff, M., Marathe, R., and Dinesh-Kumar, S. P. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to Tobacco mosaic virus. Plant J. 30:415-429. 49. Lu, H. C., Chen, H. H., Tsai, W. C., Chen, W. H., Su, H. J., Chang, D. C., and Yeh, H. H. 2007. Strategies for functional validation of genes involved in reproductive stages of orchids. Plant Physiol. 143:558-569. 50. Macfarlane, S. A. 2010. Tobraviruses--plant pathogens and tools for biotechnology. Mol. Plant Pathol. 11:577-583. 51. Mou, Z., Fan, W., and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944. 52. Musetti, R., di Toppi, L. S., Ermacora, P., and Favali, M. A. 2004. Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology 94:203-208. 53. Nagamatsu, A., Masuta, C., Senda, M., Matsuura, H., Kasai, A., Hong, J. S., Kitamura, K., Abe, J., and Kanazawa, A. 2007. Functional analysis of soybean genes involved in flavonoid biosynthesis by virus-induced gene silencing. Plant Biotechnol. J. 5:778-790. 54. Noble, R. L. 1990. The discovery of the vinca alkaloids--chemotherapeutic agents against cancer. Biochem. Cell Biol. 68:1344-1351. 55. Patui, S., Bertolini, A., Clincon, L., Ermacora, P., Braidot, E., Vianello, A., and Zancani, M. 2013. Involvement of plasma membrane peroxidases and oxylipin pathway in the recovery from phytoplasma disease in apple (Malus domestica). Physiol. Plant. 148:200-213. 56. Pieterse, C. M., and Van Loon, L. C. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr. Opin. Plant Biol. 7:456-464. 57. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Bio. 5:308-316. 58. Ratcliff, F., Martin-Hernandez, A. M., and Baulcombe, D. C. 2001. Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25:237-245. 59. Romanazzi, G., D'Ascenzo, D., and Murolo, S. 2009. Field treatment with resistance inducers for the control of grapevine bois noir. J. Plant Pathol. 91:677-682. 60. Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340-358. 61. Ruiz, M. T., Voinnet, O., and Baulcombe, D. C. 1998. Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937-946. 62. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D. 1996. Systemic acquired resistance. Plant Cell 8:1809-1819. 63. Ryu, C. M., Anand, A., Kang, L., and Mysore, K. S. 2004. Agrodrench: a novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. Plant J. 40:322-331. 64. Schneider, C. A., Rasband, W.S., Eliceiri, K.W. . 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9:671-675. 65. Scofield, S. R., Huang, L., Brandt, A. S., and Gill, B. S. 2005. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol. 138:2165-2173. 66. Senthil-Kumar, M., and Mysore, K. S. 2011a. New dimensions for VIGS in plant functional genomics. Trends Plant Sci. 16:656-665. 67. Senthil-Kumar, M., and Mysore, K. S.. 2011b. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol. J. 9:797-806. 68. Senthil-Kumar, M., Hema, R., Anand, A., Kang, L., Udayakumar, M., and Mysore, K. S. 2007. A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol. 176:782-791. 69. Shi, Z., Maximova, S. N., Liu, Y., Verica, J., and Guiltinan, M. J. 2010. Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol. 10:248. 70. Shibata, Y., Kawakita, K., and Takemoto, D. 2010. Age-related resistance of Nicotiana benthamiana against hemibiotrophic pathogen Phytophthora infestans requires both ethylene- and salicylic acid-mediated signaling pathways. Mol. Plant-Microbe Interact.23:1130-1142. 71. Spoel, S. H., Mou, Z., Tada, Y., Spivey, N. W., Genschik, P., and Dong, X. 2009. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 137:860-872. 72. Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Metraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., Dong, X., and Pieterse, C. M. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770. 73. Su, Y. T., Chen, J. C., and Lin, C. P. 2011. Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Mol. Plant-Microbe Interact. 24:1502-1512. 74. Szittya, G., Silhavy, D., Molnar, A., Havelda, Z., Lovas, A., Lakatos, L., Banfalvi, Z., and Burgyan, J. 2003. Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J. 22:633-640. 75. van Loon, L. C., Rep, M., and Pieterse, C. M. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. 76. Voinnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet. 17:449-459. 77. Voinnet, O., Lederer, C., and Baulcombe, D. C. 2000. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157-167. 78. Wang, C. C., Cai, X. Z., Wang, X. M., and Zheng, Z. 2006. Optimisation of Tobacco rattle virus-induced gene silencing in Arabidopsis. Funct. Plant Biol. 33:347-355. 79. Wang, Q., Xing, S., Pan, Q., Yuan, F., Zhao, J., Tian, Y., Chen, Y., Wang, G., and Tang, K. 2012. Development of efficient Catharanthus roseus regeneration and transformation system using Agrobacterium tumefaciens and hypocotyls as explants. BMC Biotechnol. 12:34. 80. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A. 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085-1094. 81. Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V., and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647. 82. Xie, Q., and Guo, H. S. 2006. Systemic antiviral silencing in plants. Virus Res. 118:1-6. 83. Xie, Z., Fan, B., Chen, C., and Chen, Z. 2001. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci. U S A 98:6516-6521. 84. Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y., Wang, L., Wang, J., Wang, M., Li, Q., Yang, D., and He, Z. 2007. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol. J. 5:313-324. 85. Zhang, C., Bradshaw, J. D., Whitham, S. A., and Hill, J. H. 2010. The development of an efficient multipurpose Bean pod mottle virus viral vector set for foreign gene expression and RNA silencing. Plant Physiol. 153:52-65. 86. Zhang, Y., Cheng, Y. T., Qu, N., Zhao, Q., Bi, D., and Li, X. 2006. Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs. Plant J. 48:647-656. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60642 | - |
| dc.description.abstract | 植物菌質體 (phytoplasma) 為一群缺乏細胞壁之絕對寄生菌,能在數百種經濟作物上造成數千種植物病害,其防治方式以控制媒介昆蟲與施用抗生素為主。近年來陸續在柑橘、葡萄與蓮霧發現疑似植物菌質體之新興病害,顯示目前防治策略仍有疏失。受日日春葉片黃化病植物菌質體感染之日日春 (Catharanthus roseus) 產生有病徵與無病徵枝條。於此二枝條中皆有CrPR1基因表現上升之現象,推測植物啟動系統性抗病 (systemic acquired resistance, SAR) 以抵禦植物菌質體入侵。本研究欲瞭解植物菌質體入侵後與寄主植物之交互作用,以釐清植物抵抗植物菌質體之系統性抗病路徑。採取策略乃利用病毒誘導基因靜默(virus-induced gene silencing, VIGS) 對植物系統性抗病路徑上重要基因NPR1與NPR3作靜默,觀察下游抗病基因表現量、病徵發展與菌量累積之改變,以得知它們在抵抗植物菌質體入侵上之重要性。首先需於日日春上建立有效VIGS系統;而後才可以此系統對CrNPR1與CrNPR3進行功能性分析。於第一階段,以Tobacco rattle virus (TRV) 做為病毒載體,PDS基因 (phytoene desaturase) 為測試基因。於篩選的四品系中,鐵達尼 ( Titan ) 具最佳的植物存活率與VIGS發生率,為最適日日春品系。在系統優化上,溫度對VIGS效力具顯著影響。溫度在22℃以下具較佳靜默效力。而所測試植物年齡(兩周、四周及六周)對VIGS效力無顯著影響。此外,在各器官中皆觀察到VIGS作用,然而以年輕葉及花之VIGS效應最好。從VIGS影響的研究中發現TRV2 含量與VIGS作用有密切關連性,其於植物中之分布不均似乎造成了VIGS效應於植物中的歧異。TRV的感染並未劇烈影響植物菌質體病徵發展,因此本系統應適用於植物--植物菌質體交互作用之研究。以此系統靜默CrNPR1及CrNPR3皆導致CrPR1於TRV感染植株中之表現量下降。然而僅CrNPR1靜默植株之植物菌質體病徵發展明顯加速,而病徵發展於CrNPR3靜默植株中反而較為遲緩。因此CrNPR1可能在植物抵抗植物菌質體入侵中扮演重要角色;CrNPR3於其中則是扮演負調控因子。本研究亦發現植物菌質體感染造成之CrPR1基因表現可能是藉由水楊酸 (salicylic acid, SA) 誘導之訊息傳導路徑。預期未來能藉由此研究進一步找出抗性網絡中,與CrNPR1及水楊酸相關之重要因子,對於植物菌質體病害能提供更有效之防治策略。 | zh_TW |
| dc.description.abstract | Phytoplasmas are prokaryotic plant pathogens causing considerable loss in many economical crops globally. Recently, an increasing number of phytoplasma diseases were reported on new plant hosts, indicating the traditional control strategies will need an improvement. Previously, we found that a systemic resistance is activated by PLY phytoplasma infection. Therefore, we aimed to investigate NPR1, a critical gene in SAR activation, to realize the effects of SAR on phytoplasma pathogenesis. Because a functional analysis system was lacking for periwinkle, a system based on virus-induced gene silencing (VIGS) was proposed for periwinkle. Tobacco rattle virus (TRV)-based VIGS system was tested in periwinkle and several potentially influential factors (plant cultivar, temperature, plant age, and plant organ) were analyzed to optimize the system. Based on silencing frequency and survival rate, Titan was the most appropriated cultivar for VIGS. In addition, high temperature showed negative effects on VIGS efficacy while VIGS was not significantly affected by plant age. Though VIGS reached to all plant organs, young leaves and flowers showed a more pronounced silencing effect than other organs. The differences of silencing efficacy were strongly associated with TRV2 concentration; therefore TRV2 should be critical for silencing. Moreover, because TRV infection did not greatly influence symptom development of phytoplasma, the system should be useful for plant-phytoplasma interaction studies. Using this system, CrNPR1 and CrNPR3 were respectively silenced to understand their roles in phytoplasma resistance. Silencing of either genes repressed induction of CrPR1 in TRV-infected plants. However, disease symptoms developed fastest in CrNPR1-silenced plants, and slowest in CrNPR3-silenced plants among all groups. CrNPR1 should be a critical element in defense against phytoplasma, and CrNPR3 may counteract its activity in the defense. Consistently, CrNPR1 but not CrNPR3 was induced by phytoplasma infection as well as SA treatment. The study highlights the importance of NPR1- and SA-mediated signaling pathway for resistance to phytoplasma in periwinkle, and gain more insights about plant-phytoplasma interactions to improve the disease control strategies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:24:26Z (GMT). No. of bitstreams: 1 ntu-102-R00633002-1.pdf: 2242641 bytes, checksum: 100a7cb926f050b2c2edf4222871a8f9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Chapter 1 Optimization of Tobacco rattle virus-based Virus-induced Gene Silencing System in Catharanthus roseus 1 Introduction 1 Materials and Methods 6 Plant Material and Growth Condition 6 Plasmid construction 6 Agrobacterium-mediated virus-induced gene silencing 7 RNA extraction and RT-PCR 8 Northern blot of small RNA 9 Phytoplasma inoculation 9 Results 11 TRV-induced silencing effect in different Catharanthus roseus cultivars 11 Effects of temperature on VIGS efficacy 11 Effects of plant age on VIGS efficacy 13 TRV-induced gene silencing in different organs 14 Virus and siRNA accumulations associate with different silencing efficacies 15 TRV infection dose not strongly influence symptom development of periwinkle leaf yellowing (PLY) phytoplasma infection 16 Discussion 18 Tables and Figures 25 Chapter 2 Roles of CrNPR1 and CrNPR3 in Resistance against Periwinkle Leaf Yellowing Phytoplasma 35 Introduction 35 Materials and Methods 41 Plant Materials and Growth Condition 41 Phytoplasma inoculation 41 Phylogenetic analysis of CrNPR1 and CrNPR3 42 Plasmid construction 42 Agobacterium-mediated virus-induced gene silencing 43 VIGS of CrNPR1 and CrNPR3 44 Chemical treatments 44 RNA extraction and RT-PCR 44 Quantitative reverse-transcription PCR 45 Results 47 CrPR1 is induced in both symptomatic and non-symptomatic shoots of periwinkle leaf yellowing (PLY) phytoplasma infected periwinkles 47 Identification and phylogenetic analysis of periwinkle NPR1 homologs 47 Expressions of CrNPR1 and CrNPR3 under treatment of different phytohormones and in PLY phytoplasma infected periwinkles 48 Silencing of CrNPR1 or CrNPR3 reduces transcript abundance of CrPR1 in TRV-infected periwinkles 48 Changes of pathogenesis of PLY phytoplasma in CrNPR1- and CrNPR3-silenced plants 49 Discussion 52 Tables and Figures 55 Chapter 3 Conclusion and perspectives 69 Chapter 4 Reference 71 | |
| dc.language.iso | en | |
| dc.subject | VIGS | zh_TW |
| dc.subject | Tobacco rattle virus | zh_TW |
| dc.subject | 系統性抗病 | zh_TW |
| dc.subject | NPR1基因 | zh_TW |
| dc.subject | NPR3基因 | zh_TW |
| dc.subject | PLY phytoplasma | zh_TW |
| dc.subject | Systemic acquired resistance | en |
| dc.subject | VIGS | en |
| dc.subject | Tobacco rattle virus | en |
| dc.subject | PLY phytoplasma | en |
| dc.subject | NPR1 | en |
| dc.subject | NPR3 | en |
| dc.title | 由病毒誘導基因靜默解析日日春NPR1與NPR3基因於抵抗日日春葉片黃化病植物菌質體所扮演之角色 | zh_TW |
| dc.title | Dissecting the Roles of NPR1 and NPR3 in Defence against Periwinkle Leaf Yellowing Phytoplasma in Catharanthus roseus Using Virus-induced Gene Silencing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹富智(Fuh-Jyh Jan),陳煜焜(Yuh-Kun Chen),葉信宏(Hsin-Hung Yeh) | |
| dc.subject.keyword | VIGS,Tobacco rattle virus,系統性抗病,NPR1基因,NPR3基因,PLY phytoplasma, | zh_TW |
| dc.subject.keyword | VIGS,Tobacco rattle virus,Systemic acquired resistance,NPR1,NPR3,PLY phytoplasma, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
