請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60624
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育任(Yuh-Renn Wu) | |
dc.contributor.author | Yu-Min Liao | en |
dc.contributor.author | 廖俞閔 | zh_TW |
dc.date.accessioned | 2021-06-16T10:23:49Z | - |
dc.date.available | 2013-08-25 | |
dc.date.copyright | 2013-08-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-15 | |
dc.identifier.citation | [1] J. Singh, Electronic and Optoelectronic Properties of Semiconduc-tor Structures. Cambridge University Press, 2003.
[2] D. A. Neamen, An introduction to Semiconductor devices. Boston : McGraw-Hill, 2006. Includes bibliographical references and index. [3] Inductiveload, “The basic operation of an NPN BJT in active mode,” Feb 2007. [4] P. M. Asbeck, F.-C. Chang, K.-C.Wang, G. J. Sullivan, and D. T. Cheung, “GaAs-based heterojunction bipolar transistors for very high performance electronic circuits,” Proceedings of the IEEE, vol. 81, no. 12, pp. 1709–1726, 1993. [5] S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors. John Wiley & Sons, Ltd., 2009. ISBN: 978-0-470-74369-0. [6] M. Feng, N. Holonyak, and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Applied Physics Letters, vol. 84, no. 1, pp. 151–153, 2004. [7] M. Feng, N. Holonyak, H. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Applied Physics Letters, vol. 91, no. 5, pp. 053501–053501–3, 2007. [8] H. W. Then, C. H. Wu, M. Feng, J. N. Holonyak, and G. Walter, “Stochastic base doping and quantum-well enhancement of recombination in an n-p-n light-emitting transistor or transistor laser,” Applied Physics Letters, vol. 96, no. 26, p. 263505, 2010. [9] R. D. Dupuis, “The diode laser: The first 30 days, 40 years ago,” Optics and Photonics News, vol. 15, issue 4, pp. 30–35, 2004. [10] “United states : Patent: Num: 1745175,” 1930/01/28. [11] “Germany patent: Num: Gb439457,” 1935/12/06. [12] “Invention of the First Transistor,” American Physical Society, November 17 - December 23, 1947. [13] H. Mifflin, ed., American Heritage Dictionary, 3rd ed. Boston, 1992. [14] The Nobel Prize in Physics 1956'. Nobelprize.org. Nobel Media AB 2013. Web. 25 Jun 2013. [15] J. R. Haynes and W. Shockley, “Investigation of Hole Injection in Transistor Action,” Phys. Rev., vol. 75, pp. 691–691, Feb 1949. [16] G. L. P. W. Shockley and J. R, “Hole Injection in Germanium-Quantitative studies and Filamentary Transistors,” Bell system Technical Journal, vol. 28, pp. 344–366, 1949. [17] “1951 - first grown-junction transistors fabricated,” Computer History Musium. [18] R. D. W.E. Bradley Philco Corp., “Proceeding of the IRE,” Philco Corp., Research Division, vol. 41, pp. 1702–1706, Dec 1953. [19] M. Riordan, “The lost history of the transistor,” Spectrum, IEEE, vol. 41, no. 5, pp. 44–49, 2004. [20] M. Kuzuhara and S. Tanaka, “GaAs-based high-frequency and high-speed devices,” JSAP, vol. 4, 2003. [21] H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” Proceedings of the IEEE, vol. 70, January 1982. [22] D. L. F. Glenn O. Ladd, “Performance potential of high-frequency heterojunction transistors,” IEEE Transactions on Electron Devices, vol. ED-17, May 1970. [23] B. F. Chu-Kung, M. Feng, G. Walter, J. N. Holonyak, T. Chung, J.-H. Ryou, J. Limb, D. Yoo, S.-C. Shen, R. D. Dupuis, D. Keogh, and P. M. Asbeck, “Graded-base InGaN/GaN heterojunction bipolar light-emitting transistors,” Applied Physics Letters, vol. 89, no. 8, p. 082108, 2006. [24] M. Feng, N. Holonyak, and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, no. 11, pp. 1952–1954, 2004. [25] G. Walter, C. H. Wu, H. W. Then, M. Feng, and J. N. Holonyak, “4.3 GHz optical bandwidth light emitting transistor,” Applied Physics Letters, vol. 94, no. 24, p. 241101, 2009. [26] G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 85, no. 20, pp. 4768–4770, 2004. [27] C. Chang, P. Asbeck, K.-C. Wang, and E. Brown, “Analysis of heterojunction bipolar transistor/resonant tunneling diode logic for low-power and high-speed digital applications,” Electron Devices, IEEE Transactions on, vol. 40, no. 4, pp. 685–691, 1993. [28] L. F. Eastman and U. K. Mishra, “The toughest transistor yet - GaN transistors,” Spectrum, IEEE, vol. 39, no. 5, pp. 28–33, 2002. [29] H. W. Then, M. Feng, and J. N. Holonyak, “Physics of base charge dynamics in the three port transistor laser,” Applied Physics Letters, vol. 96, no. 11, p. 113509, 2010. [30] Y.-R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” Journal of Applied Physics, vol. 94, no. 9, pp. 5826–5831, 2003. [31] C.-K. Li and Y.-R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs,” Electron Devices, IEEE Transactions on, vol. 59, no. 2, pp. 400–407, 2012. [32] D. Vasileska and S. M. Goodnick, Computational Electronics. Morgan & Claypool publishers, 2006. [33] E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2003. [34] S. Adachi, GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties. World Scientific, 1994. [35] L. J. Brillson, Surface and Interface of Electronic Materials. Weinheim : Wiley-VCH : IEEE, March 2010. [36] R. Cheekoori, Electron transport in wide energy gap semiconductors. 2012. [37] M. R. Brown, R. J. Cobley, K. S. Teng, P. Rees, S. P. Wilks, A. Sobiesierski, P. M. Smowton, and P. Blood, “Modeling multiple quantum barrier effects and reduced electron leakage in red emitting laser diodes,” Journal of Applied Physics, vol. 100, no. 8, p. 084509, 2006. [38] M. P. C. M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol, vol. 6, no. 1, 1991. [39] H. Arabshahi and M. Rezaee Roknabadi, “Temperature and doping dependencies of electron mobility in InAs, AlAs, and AlGaAs at high electric field application,” Brazilian Journal of Physics, vol. 38, pp. 293–296, February 2008. [40] T. R. Jervis, “Temperature dependence of the electron mobility in GaAs,” physica status solid, vol. 53, num2, pp. K199–K202, 1979. [41] S. C. 4701 Patrick Henry Drive, Bldg. 1, “Atlas users manualdevice simulation software,” Feb 2000. [42] B. V. Zeghbroeck, Principle of Semiconductor Device, Chapter 2: Semiconductor Fundamentals. 2011. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60624 | - |
dc.description.abstract | 本篇論文主要在於探討砷化鎵發光電晶體的特性。由於發光電晶
體是由雙極性接面電晶體的基本結構與特性加以改良而來,因此, 我們會先簡介雙極性接面電晶體的基本特性。我們使用了實驗室開 發的程式,解波松方程式和漂移,擴散方程式,並且在高電場時的 砷化鎵區域,使用速度-電場飽和曲線模型。 本文中,分析了兩個發光電晶體結構並和實驗做比較:一個在基 極區域放置量子井(砷化銦鎵),稱作”LET”,另一個沒有放量 子井而以未摻雜的砷化鎵代替,稱作”HBT”。我們發現,電流增 益在HBT裡比在LET中大,但是,發光率卻是在LET中較高,這是 因為當電子由射極擴散到基極時,他會和在基極區域的電洞複合, 或是繼續擴散進而被集極所收集形成集極電流。由於元件操作時溫 度會上升,當溫度上升時,HBT的集極電流會下降,但是LET的集 極電流會上升。進而,我們利用載子的熱逃脫時間來近似載子穿越 基極所需的時間,當基極電流上升時,所需的時間下降,並且可達 到20ps,也和實驗吻合。 最後,我們分析了影響元件操作的各種不同因素,以提供元件設 計者設計元件的方向,並且發現,當射極摻雜較高,2×1018 cm−3, 元件操作在基極電流為5毫安培時,所有由基極注入電流並且在量 子井中複合發光的比例高達73%,電流增益為2.94,基極傳輸時間 為50.6 ps。 | zh_TW |
dc.description.abstract | In the thesis, we study the characteristics of the light emitting transistors.
We first introduce the basic properties of the bipolar junction transistor, because the light emitting transistor was based on the concept of the bipolar junction transistor. To investigate the dynamics of the device, we use the poisson drift-diffusion solver developed in our lab. We apply the velocity saturation model at high electric field on the intrinsic layer of GaAs materials. We analyzed two structures and compared it with experiment data: one without QWs in the base region is called as ”heterojunction bipolar transistor”(HBT); another with QWs in the base region is called as ”light emitting transistors”(LET). The current gain(IC/IB) is much larger in the HBT case than in the LET case. However, the ecombination rate in LET case is larger. Because when electrons diffuse into the base region, they either recombine with holes or are swept to the collector port as the collector current. Besides, because when temperature increases, the mobility will decrease. This will lead to lower collector current in HBT, higher in LET. Furthermore, we approximate the base transit time as the thermionic escaping time. The base transit time can be up to 20 ps which is fast and close to the experimental data. We also analyzed a series of factors affecting the device performance for designers a direction and optimized the device. We found that the higher emitter doping level can get better recombination rate and current gain. At 2 × 1018 cm−3 of the emitter doping level, and the work condition under IB=5mA, we can achieve that the recombination percentage in QWs 73%, the current gain 2.94, and the base transit time 50.6 ps. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T10:23:49Z (GMT). No. of bitstreams: 1 ntu-102-R00941088-1.pdf: 2930064 bytes, checksum: 42e2b469423834e412b27c7fe3fca47e (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審查表. . . . . . . . . . . . . . . .. . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . iii 英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . v 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . vii 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . x 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Properties of GaAs . . . . . . . . . . . . . . . 2 1.3 The bipolar junction transistors . . . . . . . . . . 3 1.3.1 Introduction of bipolar junction transistors . . . 3 1.3.2 The application of GaAs-based bipolar junction transistors . . . . . . . . . . . . . . . . . . . . . . .6 1.3.3 The basic structure of bipolar junction transistors 7 1.3.4 The basic operation of bipolar junction transistors 8 1.3.5 Derivation of current profile . . . . . . . . . . . 10 1.3.6 From homojunction to heterojunction . . . . . . . . 14 1.4 The characteristic of light emitting transistors . . 17 1.5 Light emitting transistor studied today . . . . . .18 2 Formalism . . . . . . . . . . . . . . . . . . . . . . . 20 2.1 Drift-Diffusion Charge Control model . . . . . . . . .20 2.2 The Simulation Model for GaAs-based transistor . . . .24 2.2.1 The GaAs mobility model . . . . . . . . . . . . . . 25 2.2.2 The concept of effective mass . . . . . . . . . . . 28 2.3 Parameter research-electron affinity . . . . . . . . .29 2.3.1 Formation of heterojunction . . . . . . . . . . . . 29 2.3.2 The collection of electron affinity . . . . . . . . 32 3 Simulation . . . . . . . . . . . . . . . . . . . . . . .34 3.1 Introduction of the structure . . . . . . . . . . . . 34 3.2 Results and Discussion . . . . . . . . . . . . . . . .38 3.2.1 Current-Voltage Curve . . . . . . . . . . . . . . . 38 3.2.2 Radiative recombination rate pattern and the current flow . . . . .45 3.2.3 Device heating effect . . . . . . . . . . . . . . . 47 3.2.4 Base transit time . . . . . . . . . . . . . . . . . 50 4 The factor which influence the device performance . . . 53 4.1 Quantum well characteristics . . . . . . . . . . . . .53 4.1.1 QW numbers . . . . . . . . . . . . . . . . . . . . .53 4.1.2 The thickness of barrier between the QWs . . . . . .55 4.1.3 QW depth . . . . . . . . . . . . . . . . . . . . . .57 4.1.4 QW width . . . . . . . . . . . . . . . . . . . . . .58 4.2 Different doping level in each region . . . . . . . . 60 4.3 A and C coefficient in ABC model . . . . . . . . . . .62 4.4 Optimization of the device . . . . . . . . . . . . . .65 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . .68 Bibliography . . . . . . . . . . . . . . . . . . . . . . .70 | |
dc.language.iso | en | |
dc.title | 砷化鎵發光電晶體特性的研究 | zh_TW |
dc.title | The study of characteristic of GaAs light emitting transistors | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳肇欣(Chao-Hsin Wu),陳奕君(I-Chun Cheng),余沛慈(Pei-Chen Yu),黃建璋(Jian-Jang Huang) | |
dc.subject.keyword | 砷化鎵發光電晶體, | zh_TW |
dc.subject.keyword | GaAs light-emitting transistor, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-16 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。