請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60614完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林清富(Ching-Fuh Lin) | |
| dc.contributor.author | Shao-Hsuan Kao | en |
| dc.contributor.author | 高紹軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:23:27Z | - |
| dc.date.available | 2018-08-27 | |
| dc.date.copyright | 2013-08-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 第一章
[1] D. Helm, “Peak oil and energy policy—a critique,” Oxford Review of Economic Policy 27, 68–91 (2011). [2] F. C. Krebs, 'Polymer photovoltaics: a practical approach,' SPIE Press (2008) [3] http://www.taiwanoil.org/ [4] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 39),' Progress in Photovoltaics 20, 12-20 (2012). [5] P. Peumans, V. Bulovi, and S. R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diode,” Appl. Phys. Lett. 79, 126 (2001). [6] B. O'Regan and M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' Nature 353, 737-740 (1991). [7] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, 'Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,' Science 258, 1474-1476 (1992). [8] N. S. Sariciftci, D. Braun and C. Zhang, 'Semiconducting polymer‐ buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells,' Appl. Phys. Lett. 62, 585-587 (1993). [9] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, 'Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,' Science 270, 1789-1791 (1995). [10] M. Reyes-Reyes, K. Kim and D. L. Carroll, 'High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,' Appl. Phys. Lett. 87, 083506 (2005). [11] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, 'Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,' Adv. Funct. Mater. 15, 1617-1622 (2005). [12] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, 'High-efficiency solution processable polymer photovoltaic cells byself-organization of polymer blends,' Nat. Mater. 4, 864–868 (2005). [13] K. Kim, J. Liu, M. A. G. Namboothiry and D. L. Carroll, 'Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,'Appl. Phys. Lett. 90, 163511 (2007). [14] http://www.solarmer.com [15] L. Dou, J. Gao, E. Richard, J. You, C.-C. Chen, K. C. Cha, Y. He, G. Li, and Y. Yang, “Systematic Investigation of Benzodithiophene- and Diketopyrrolopyrrole-Based Low-Bandgap Polymers Designed for Single Junction and Tandem Polymer Solar Cells,” J. Am. Chem. Soc. 134, 10071−10079 (2012). [16] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24, 3046–3052 (2012). [17] J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li,W. C. H. Choy, and Y. Yang, “Surface Plasmon and Scattering-Enhanced Low-Bandgap Polymer Solar Cell by a Metal Grating Back Electrode,” Adv. Energ. Mater. 2, 1203-1207 (2012). [18] L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer,” Nat. Photonics. 6, 180 (2012). [19] http://www.orgworld.de/ [20] M. E. Ashry, “RENEWABLES 2012 GLOBAL STATUS REPORT”, REN21, France. [21] “綠能產業因應世界經濟情勢衰退之策略分析”經濟部能源局, 101年3月13日 [22] http://www.energytrend.com.tw/ [23] Karg, W. Riess, V. Dyakonov, and M. Schwoerer, “Electrical and optical characterization of poly(phentlene-vinylene) light emitting diode,” Synth. Met. 54, 427 (1993). [24] K. Kim, J. Liu, M. A. G. Namboothiry and D. L. Carroll, 'Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics,' Appl. Phys. Lett. 90, 163511 (2007). [25] Ma, W. Yang, C., Gong, X., Lee, K. and Heeger, A. J., “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology.” Adv. Funct. Mater. 15, 1617–1622 (2005) [26] G. Li, V. Shrotriya, Y. Yao, Y. Yang, “Investigation of annealing effects and film92thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys. 98 (2005) 43704–43708. [27] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction,” Science 270, 1789(1995). [28] 2010-06-23 | Courtesy: NREL; Solarmer Energy, Inc. | solarserver.com c Heindl Server GmbH [29] P. Schilinsky, C. Waldauf, and C. J. Brabec, “Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors,” Appl. Phys. Lett. 81, 3885 (2002). [30] F. Padinger, R. S. Rittberger, N. S. Sariciftci, 'Effects of Postproduction Treatment on Plastic Solar Cells', Adv. Funct. Mater. 13, 2003, 85-88. [31] G. Li, V. Shrotriya, Y. Yao, Y. Yang, 'Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)', J. Appl. Phys. 98, 2005, 043704. [32] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, 'Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology', Adv. Funct. Mater. 15, 1617-1622 (2005). [33] Muhlbacher, D. et al., “High photovoltaic performance of a low-bandgap polymer,” Adv. Mater. 18, 2884–2889 (2006). [34] J. S. Moon, J. Jo, and A. J. Heeger, 'Nanomorphology of PCDTBT:PC70BM Bulk Heterojunction Solar Cells,' Adv. Energ. Mater. 2, 304–308 (2012). [35] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nature Photonics 3, 649-653 (2009). [36] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu 'For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mat., 22, E135–E138 (2010). [37] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, 'Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer', Nature Photonics, 6, 180–185 (2012). [38] J. You, C. C. Chen, L. Dou, S. Murase, H. S. Duan, S. A. Hawks, T. Xu, H. Jung Son, L. Yu, G. Li and Y. Yang, 'Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells,' Advanced Materials 24, 5267–5272 (2012). [39] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau et al.,”Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer,” App. Phys. Lett. 80, 2788 (2002). [40] M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, “Stability of the interfacebetween indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes,” App. Phys. Lett. 77, 255 (2000). [41] C. H. Woo, B.y C. Thompson, B.n J. Kim, M. F. Toney, J. M. J. Fre’chet, “The influence of poly (3-hexylthiophene) regioregularity on fullerene-composite solar cell performance.” J. Am. Chem. Soc. 130 (2008). [42] Y. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. Huang, “Efficiency enhancement in organic solar cells with ferroelectric polymers,” Nature Materials 10, 296–302 (2011). [43] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, “Efficient inverted polymer solar cells,” App. Phys. Lett. 88, 253503 (2006). [44] Ming-Yi Lin, Chun-Yu Lee, Shu-Chia Shiu, Ing-Jye Wang, Jen-Yu Sun, Wen-Hau Wu, Yu-Hong Lin, Jing-Shun Huang, Ching-Fuh Lin, “Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells,” Org. Electron. 11, 1828–1834 (2010). [45] J.-S. Huang, C.-Y. Chou, C.-F. Lin, “Efficient and air-stable polymer photovoltaic devices with WO3-V2O5 mixed oxides as anodic modification,” IEEE Electr. Dev. Lett. 31, 332–334 (2010). [46] P.-C. Yang, J.-Y. Sun, S.-Y. Ma, Y.-M. Shen, Y.-H. Lin,C.-P. Chen, C.-F. Lin, “Interface modification of a highly air-stable polymer solar cell,” Sol. Energy Mater. Sol. Cells. 98, 351-356 (2012). [47] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer,” Appl. Phys. Lett. 92, 173303 (2008). [48] Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, “Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells,” Adv. Funct. Mater. 19, 1227-1234 (2009). [49] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, “Highly efficient inverted organic photovoltaics using solution basedtitanium oxide as electron selective contact,” Appl. Phys. Lett. 89, 233517 (2006). [50] Y. J. Cheng, F. Y. Cao, W. C. Lin, C. H. Chen, C. H. Hsieh, “Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells,” Chem. Mater. 23, 1512 (2011). [51] Yip, H-L., Hau, S. K., Baek, N. S., Ma, H. & Jen, A. K-Y. “Polymer solar cells thatuse self-assembled-monolayer-modified ZnO/metals as cathodes,” Adv. Mater. 20 2376–2382 (2008). [52] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, “A roll-to-roll process to flexible polymersolar cells: model studies, manufacture and operational stability studies,” J. Mater.Chem. 19, 5442–5451 (2009). [53] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnOunderlayer,” Appl. Phys. Lett. 89, 143517 (2006). [54] J.-S. Huang, C.-Y. Chou, M.-Y. Liu, K.-H. Tsai, W.-H. Lin, and C.-F. Lin, “Solution-processed vanadium oxide as an anode interlayer for invertedpolymer solar cells hybridized with ZnO nanorods,” Org. Electron. 10, 1060–1065. (2009) [55] A. Pupiovskis, J. Kacens and O. Neilands, “New Route for [60]Fullerene Functionalisation in [4+2] Cycloaddition Reaction Using Indene,” Tetrahedron Lett. 38, 285-288 (1997). [56] D. W. Laird, R. Stegamat, M. Daadi, H. Richter, V. Vejins, L. Scott and T. A. Lada, 'Organic photovoltaic devices comprising fullerenes and derivatives thereof,' US Patent Application Publication No. US 2010/0132782 A1, June 3 (2010) [57] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, “Inverted Polymer Solar Cells Integrated with a Low-Temperature-Annealed Sol-Gel-Derived ZnO Film as an Electron Transport Layer,” Adv. Mater. 23, 1679–1683 (2011). [58] C. E. Small, S. Chen, J. Subbiah, C. M. Amb, S.-W. Tsang, T.-H. Lai, J. R. Reynolds and F. So, “High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells,” Nat. Photonics. 6, 115–120 (2011). [59] C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang, and Y. Li, “Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods,” Angew. Chem. Int. Ed. Engl. 50, 9386-9390 (2011). [60] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24, 3046–3052 (2012). [61] S. B. Jo, W. H. Lee, L. Qiu, and K. Cho, 'Polymer blends with semiconducting nanowires for organic electronics', J. Mater. Chem.22, 4244 (2012). [62] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu,Y. L. Wang, and Y. F. Li, 'Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods', Angew. Chem. Int. Ed. 50, 9386–9390 (2011). [63] D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaheen, D. S. Ginley, J.A. Voigt, J. W. P. Hsu, 'Effect of polymer processing on the performance of poly(3-hexylthiophene)/ZnO nanorod photovoltaic devices', J. Phys. Chem. 111, 16640-16645 (2007). [64] D. C. Olson, S. E. Shaheen, R. T. Collins, D. S. Ginley, 'The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices', J. Phys. Chem. 111, 16670-16678 (2007). [65] K. Takanezawa, K. Hirota, Q. S. Wei, K. Tajima, K. Hashimoto, 'Efficient chargecollection with ZnO nanorod array in hybrid photovoltaic devices', J J. Phys. Chem. 111, 7218-7223 (2007). 第二章 [1] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 36),' Progress in Photovoltaics 18, 346-352 (2010). [2] M. C. Scharber et al., “Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency,” Adv. Mater.18, 789-794 (2006). [3] W. Brutting, 'Physics of organic semiconductors,' Wiley-VCH (2005). [4] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, 'Design rule for donors in bulk-heterojunction solar cells – Towards 10% energy-conversion efficiency,' Adv. Mater. 18, 789–794 (2006). [5] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M.D. McGehee, 'Polymer-based solar cells,' Mater. Today 10, 28–33 (2007). [6] L. J. A. Koster, 'Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer,' Appl. Phys. Lett. 89, 012107 (2006). [7] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, 'High-efficiency solution processable polymer photovoltaic cells by self- organization of polymer blends,' Nat. Mater. 4, 864-868 (2005). [8] Jarzab, D. et al. Charge Transfer Dynamics in Polymer-Fullerene Blends for Efficient Solar Cells. J. Phys. Chem. B 113, 16513–16517 (2009). [9] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, 'Design rule for donors in bulk-heterojunction solar cells – Towards 10% energy-conversion efficiency,' Adv. Mater. 18, 789–794 (2006). [10] J. T. Shieh, C. H. Liu, H. F. Meng, S. R. Tseng, Y. C. Chao, and S. F. Horng, 'The effect of carrier mobility in organic solar cells,' J. Appl. Phys. 107, 084503 - 084503-9 (2010). [11] K. M. Coakley, M. D. McGehee, 'Conjugated polymer photovoltaic cells,' Chem. Mater. 16, 4533-4542 (2004). [12] C. W. Tang, 'Two-layer organic photovoltaic cell,' Appl. Phys. Lett. 48, 183-185 (1986). [13] G. Yu, J. Gao, J.Hummelen, F. Wudl, A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction,“ Science 270, 1789 (1995). [14] F. Padinger, R. S. Rittberger, N. S. Sariciftci, 'Effects of Postproduction Treatment on Plastic Solar Cells', Adv. Funct. Mater. 13, 85 – 88, (2003). [15] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, A. J. Heeger, 'New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer,” Adv. Mater. 18, 572 (2006). 第三章 [1] E. Bundgaard and F. C. Krebs, 'Low band gap polymers for organic photovoltaics,' Sol. Energy Mater. Sol. Cells 91, 954-985 (2007). [2] http://www.solarmer.com/ [3] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, 'Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers', Angew. Chem. Int. Ed. 50, 9697–9702 (2011). [4] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nat. Photonics. 3, 649-653(2009). [5] C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang, and Y. Li, “Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods,” Angew. Chem. Int. Ed. Engl. 50, 9386-9390 (2011). [6] J. Hou, M. H. Park, S. Zhang, Y. Yao, L. M. Chen, J. H. Li and Y. Yang, 'Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b:4,5-b']dithiophene', Macromolecules 41, 6012–6018 (2008). [7] Y. He, Y. Li , 'Fullerene derivative acceptors for high performance polymer solar cells', Phys. Chem. Chem. Phys.13, 1970-1983 (2011). [8] M. S. Su, C. Y. Kuo, M. C. Yuan, U.S.Jeng, C. J. Su, and K.H. Wei, 'Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives', Angew. Chem. Int. Ed. 23, 3315–3319 (2011). [9] H. Y. Chen, J. H. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency' Nat. Photonics. 3, 649-653 (2009). [10] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, 'For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mat. 22, E135–E138 (2010). [11] L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, 'Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer', Nat. Photonics 6, 180–185 (2012). 第四章 [1] S. B. Jo, W. H. Lee, L. Qiu, and K. Cho, 'Polymer blends with semiconducting nanowires for organic electronics', J. Mater. Chem. 22, 42-44 (2012). [2] C. Y. Chang, C. E. Wu, S. Y. Chen, C. Cui, Y. J. Cheng, C. S. Hsu,Y. L. Wang, and Y. F. Li, 'Enhanced Performance and Stability of a Polymer Solar Cell by Incorporation of Vertically Aligned, Cross-Linked Fullerene Nanorods,' Angew. Chem. Int. Ed. 50, 9386–9390 (2011). [3] Wendy U. Huynh, Janke J. Dittmer, A. Paul Alivisatos, 'Hybrid Nanorod-Polymer Solar Cells,” Science. 29, 2425-2427 (2002). [4] H. Bi and R. R. LaPierre, 'A GaAs nanowire/P3HT hybrid photovoltaic device,' Nanotechnology 20, 465205 (2009). [5] C. J. Brabec, and J. R. Durrant, 'Solution-processed organic solar cells,' MRS Bull. 33, 670–675 (2008). [6] M. Jorgensen, K. Norrman and F.C. Krebs, 'Stability/degradation of polymer solar cells,' Sol. Energy Mater. Sol. Cells 92, 686-714 (2008). [7] M. Helgesen, R. Sondergaard and F.C. Krebs, 'Advanced materials and processes for polymer solar cell devices,' J. Mater. Chem. 20, 36-60 (2010). [8] S. K. Hau, H.–L. Yip, J. Zou and A. K.–Y. Jen, 'Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes,' Org. Electron. 10, 1401-1407 (2009). [9] Q. Dong, Y. Zhou, J. Pei, Z. Liu, Y. Li, S. Yao, J. Zhang and W. Tian, 'All-spin-coating vacuum-free processed semi-transparent inverted polymer solar cells with PEDOT:PSS anode and PAH-D interfacial layer,' Org. Electron. 11, 1327-1331(2010). [10] M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman and F.C. Krebs, 'The effect of post-processing treatments on inflection points in current-voltage curves of roll-to-roll processed polymer photovoltaics,' Sol. Energy Mater. Sol. Cells 94, 2018-2031 (2010). [11] Y. Galagan, J.–E. J.M. Rubingh, R. Andriessen, C.–C. Fan, P.W.M. Blom, S.C. Veenstra and J. M. Kroon, 'ITO-free flexible organic solar cells with printed current collecting grids,' Sol. Energy Mater. Sol. Cells. 95, 1339-1343 (2011). [12] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee and A.J. Heeger, 'Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,' Nat. Photonics 3, 297-302 (2009). [13] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency,' Nat. Photonics 3, 649-653 (2009). [14] Y. He, H.-Y. Chen, J. Hou and Y. Li, 'Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells,' J. Am. Chem. Soc. 132, 1377-1382 (2010). [15] G. Zhao, Y. He and Y. Li, '6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization,' Adv. Mater. 22, 4355-4358 (2010). 第五章 [1] 邱國斌, and 蔡定平, 金屬表面電漿簡介, 物理雙月刊, 廿八卷二期, 472-485 (2006). [2] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, “Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992). [3] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, “Near-field images of the AgOx-type super-resolution near-field structure,” Appl. Phys. Lett. 78, 685 (2001). [4] C. Haynes, and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 107, 7426 (2003). [5] W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” J. Vacuum Science & Tech. B 22, 3475 (2004). [6] M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells. 61, 97 (2000). [7] K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160 (1998). [8] H. Kano, and S. Kawata, Excitation of surface-plasmon polaritons by a focused laser beam, Jpn. J. Appl. Phys. 34, 331 (1995). [9] H.-J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim and N.-G. Park, “Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells,” Adv. Mater. 20, 195–199 (2008). [10] M. Sommer, S. Huttner, U. Steiner, M. Thelakkat, “Influence of molecular weight on the solar cell performance of double-crystalline donor-acceptor block copolymers,” Appl. Phys. Lett. 95, 183308-183308-3 (2009). [11] Gu‥nes, S.; Neugebauer, H.; Sariciftci, N. S., “Conjugated Polymer-Based Organic Solar Cells,” Chem. Rev. 107, 1324−1338 (2007). [12] P. Bermel , C. Luo , L. Zeng , L. C. Kimerling , J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Optical Express 15, 16986 – 17000 (2007). [13] J. Krc, M. Zeman, S. L. Luxembourg, M. Topic, “Incorporation of Inorganic Nanoparticles into Bulk Heterojunction Organic Solar Cells,” Appl. Phys. Lett. 94, 153501 (2009). [14] Q. Gan, F. J. Bartoli, Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater. 25, 2385-2396 (2013). [15] V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater. 22, 4794–4808 (2010). [16] J. Yang, J. You, C.-C. Chen, W.-C. Hsu, H.-r. Tan, X. W. Zhang, Z. Hong, and Y. Yang, “Plasmonic Polymer Tandem Solar Cell,” ACS Nano 5, 6210–6217 (2011). [17] L. Lu, Z. Luo, T. Xu, and L. Yu, “Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells,” Nano Lett. 13, 59–64 (2013). [18] H. A. Atwater , A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205 – 213 (2010). [19] Z. Yu, A. Raman and S. Fan, “Thermodynamic upper bound on broadband light coupling with photonic structures,” Phys. Rev. Lett. 109, 173901 (2012). [20] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells, Proceedings of the National Academy of Sciences,” 107, 17491-17496 (2010). [21] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater. 24, 3046–3052 (2012). [22] J.Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu and G. Li, “Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells,” J. Am. Chem. Soc. 131, 15586–15587 (2009). [23] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010). [24] Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics. 6, 591–595 (2012). [25] Y.-H. Lin, P.-C. Yang, J.-S. H., G.-D. Huang, I.-J. Wang, W.-H. Wu, M.-Y. Lin, W.-F. Su, and C.-F. Lin, “High-Efficiency Inverted Polymer Solar Cells with Solution-Processed Metal Oxides,” Sol. Energy Mater. Sol. Cells. 95, 2511-2515 (2011). [26] P.-C. Yang ,J.-Y. Sun, S.-Y. Ma, Y.-M. Shen ,Y.-H. Lin, C.-P. Chen, and C.-F. Lin, “Interface Modification of a Highly Air-stable Polymer Solar Cell,” Sol. Energy Mater. Sol. Cells. 98, 351-356 (2012). [27] J.-S. Huang, C.-Y. Chou, and C.-F. Lin, “Efficient and air-stable polymer photovoltaic devices with WO3-V2O5 mixed oxides as anodic modification,” IEEE Electron Dev. Lett. 31, 332-334 (2010). [28] Zhao, D. W., S. T. Tan, et al. “Optimization of an inverted organic solar cell,” Sol. Energy Mater. Sol. Cells. 94, 985-991 (2010). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60614 | - |
| dc.description.abstract | 能源議題近年來廣泛受到重視,太陽能電池具有用之不竭以及乾淨環保優勢,是解決人類未來能源問題的重要方向。在各種太陽能電池當中,有機高分子太陽能電池被視為可取代矽基板材料的下世代技術,該系統相較於矽基板太陽能電池有更好的成本效益,除此之外也有輕量化、可製作在可撓基板等優點,本研究針對高分子太陽能電池技術進行改良,以增進元件光電轉換效率。
本論文以低能隙倒置結構高分子太陽能電池為基礎,透過一系列改良其載子傳輸效益的方法,不論是傳輸效率的改善還是載子生成量的增加,來達成低成本高效率的研究目標。其中在PBDTTT-C-T:PC71BM系統中,探討低能隙高分子太陽能電池以溶液製程控制形貌的方法,利用簡單的溶液製程改良方式來改善有機異質混層結構的高分子與富勒烯衍生物的分佈,形成理想的電子施體與受體交錯情形與提升激子產生介面區域。並且探討適當的旋轉塗佈速率來強化載子產生與收集,形成兼具吸收與載子傳輸優點的主動層厚度。成功改善有機太陽能電池的主動層材料分佈型態,並且最佳元件轉換效率達到5.27%。使用此法改良形貌增進效率,方法不僅簡單,也可被應用於多數倒置低能隙材料有機太陽電池系統。 由於有機材料載子遷移距離短,因此有機主動層內部載子不易傳導出來。因此研究中也建立深入主動層中萃取載子的方法。成功地藉由調整水熱法生長氧化鋅奈米柱的成長環境的生長液配方,系統性地控制了氧化鋅奈米柱陣列的形貌,包括柱長、柱徑、柱間距與柱密度。並且統和這些因子,計算出長柱所增加的理論總表面積。氧化鋅奈米柱有增加主動層有效利用區域的效益,透過控制氧化鋅奈米柱和主動層接觸的總表面積以及柱間距,以及探討柱間距對於主動層滲入氧化鋅奈米柱的影響,可以大幅增加元件短路電流和轉換效率。對於PBDTTT-C-T:PC71BM倒置結構太陽能電池,適當的長柱形貌能大幅提升有機主動層中載子利用的效率,使太陽能電池元件短路電流達到16.8mA/cm2的高電流密度表現,而元件光電轉換效率能提升到7.26%。另外此方法因為是作電子傳輸層的形貌改善,因此和有機主動層內部的材料分佈控制能夠獨立操作,而對於元件表現的影響也能夠加成。因此這個方法對不同有機物材料具通用性。使得材料研發與元件製程的研究能夠各自獨立開發而不衝突,達到良好的合作。 本研究證實這些方法的確也能成功提升另一系統PTB7:PC71BM的元件表現。但為了繼續提高元件效率,有機太陽能電池還有元件吸收量不足的問題需要改善。本研究成功利用添加金奈米粒子於有機太陽能電池主動層中來增加吸收表現。並整合主動層材料分佈型態與氧化鋅奈米柱陣列作法的作法,選擇適當粒徑的金奈米粒子分散於主動層溶液中並滲入氧化鋅奈米柱陣列裡,同時增加元件吸收與載子傳輸的效果。在調整適當的金奈米粒子濃度後,可以盡可能降低漏電流與能階問題的負面影響。另外提出複合兩種金奈米粒子粒徑應用的作法,來更加發揮表面電漿效應提升元件吸收,同時避免大粒徑卡在奈米柱表面的問題,在適當的大粒徑金奈米粒子旋鍍轉速控制後,能達到元件高短路電流的效果並保持良好的開路電壓和填充因子。最後是控制此元件製作架構下的電洞傳輸層氧化鉬厚度來最佳化元件表現。經過所有最佳條件處理,PTB7:PC71BM系統倒置有機太陽能電池可以達到7.86%的高光電轉換效率。另外,將本論文章節研究之方法和另一位同學之技術結合後,證實能將元件表現提升到超過8%,是奈米結構太陽能電池的一大突破。 | zh_TW |
| dc.description.abstract | Solar energy, with its features of inexhaustibility and cleanness, is the most promising technology for solving the energy crisis and achieving sustainable development in the future. Among the various kinds of solar cells, organically based solar cells are regarded as the next generation of technology that will replace silicon-based cells because of the advantages of low cost, light weight, and mechanical flexibility. In the study, polymer solar cell technology has been improved to enhance its conversion efficiency.
In this dissertation, it is mainly focus on solution processed inverted polymer solar cell systems. To reach the research target of low-cost and high efficiency, several approaches of carrier transport and carrier generation have been investigated. In the study of PBDTTT-C-T:PC71BM low-bandgap system, solution processed active layer morphology control methods have been developed. Some simple solution processed methods including mixed solvent and additives, have been used to improve the distribution of polymer and fullerene derivatives in heterojunctional active layer, forming ideal electron donor and acceptor morphology and increasing excitons generation area. Besides, proper active layer spin speed has been discussed to improve carrier generation and collection. These methods improve the morphology successfully and enhance the device conversion efficiency to reach 5.27%. Because of the short carrier diffusion length, carriers in the active layer are hard to be collected. As a result, ZnO nanorod array has been applied to provide a large number of carrier extraction channels deeply inside the active layer. We found a method of effectively controlling the ZnO nanorod array morphology. The ZnO nanorod array morphology parameters, including length, diameter, spacing, and density, were able to be controlled by adjusting the ratio of zinc nitrate and hexamethylenetetramine (HMT) in a growth-promoting solution to create different environments for hydrothermal growth. We also found that the contact area between ZnO nanorods and the active layer could be maximized with this ZnO nanorod array morphology control method, and the condition of the active ink infiltration could be improved. As a result, PBDTTT-C-T:PC71BM low-bandgap solar cells perform high short circuit current 16.8mA/cm2, and the device efficiency improved to 7.26%. The device improving process of PBT7:PC71BM system shows that these methods can be applied to other low-bandgap system successfully. However, to reach higher device efficiency, the problem of insufficient absorption needs to be ameliorated. In this dissertation, the approached of applying Au nanoparticles in nanostuctural polymer solar cells has been developed. The localizd surface plasmonic resonance and particle scattering effect promote active layer absorption, generating more carriers. The proper size-choosed Au nanoparticles combined with ZnO nanorod array to increase absorption and carrier extraction simultaneously. On the other hand, the new concept of combination of adding two sized Au nanoparticles in active layer has been deveploed, therefore, absorption increase resulting high short circuit current and fill factor. By proper controlling spin-coating speed of large sized Au nanoparticle, the device performance has a breakthough of ZnO nanorod polymer solar cell. Finally, the thickness of hole transport layer molybdenum oxide has been experimented to optimize PTB7:PC71BM system solar cells. The optimized device, which follows the rule of low-costs, has over 8% conversion efficiency. These approaches promote the development of inverted organic solar cells to a new milestone. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:23:27Z (GMT). No. of bitstreams: 1 ntu-102-R00941039-1.pdf: 8547589 bytes, checksum: 60e85e2e3fa07fc4258280c9081cd49e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
誌謝 III 中文摘要 IV ABSTRACT VI 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.1.1 能源需求與太陽能電池之發展 1 1.1.2 有機太陽能電池之發展進程 3 1.1.3 太陽能電池之市場分析與現況 5 1.2 文獻回顧 7 1.2.1 高分子太陽能電池演進 7 1.2.2 倒置結構 9 1.2.3 低能隙材料與串接式太陽能電池 10 1.2.4 高分子太陽能電池奈米結構 11 1.3 參考資料 12 第二章 實驗原理 21 2.1 太陽能電池基本原理 21 2.1.1 太陽能電池基本工作原理 21 2.1.2 太陽能基本參數 23 2.2 高分子太陽能電池技術 25 2.2.1 導電高分子光物理 25 2.2.2 太陽能電池元件工作原理 28 2.2.3 高分子太陽能電池主動層結構發展 31 2.3 參考資料 32 第三章 低能隙高分子太陽能電池以溶液製程控制形貌 35 3.1 高效率低能隙高分子 35 3.1.1 低能隙高分子材料PBDTTT-C-T介紹 36 3.1.2 混合溶劑與添加劑對元件影響 37 3.2 研究動機 38 3.3 元件製備流程 39 3.3.1 溶液製備 39 3.3.2元件製作流程 40 3.4 結果與討論 42 3.4.1 不同混合溶劑使用的結果比較 42 3.4.2 添加劑的使用結果與比較 45 3.4.3 混合溶劑法與添加劑法之綜合分析與比較 48 3.4.4 調整不同主動層厚度的影響 50 3.5 結論 54 3.6 參考資料 54 第四章 系統性地控制氧化鋅奈米柱生長形貌對於倒置太陽能電池應用 57 4.1 氧化鋅奈米柱簡介 57 4.1.1 氧化鋅奈米柱特性介紹 58 4.1.2 水熱法製作氧化鋅奈米柱 59 4.1.3 調控生長液配方對於形貌控制之原理根據 59 4.2 研究動機 60 4.3 元件製備流程 61 4.3.1 溶液配製 61 4.3.2 元件製作流程 62 4.4 結果與討論 66 4.4.1 生長液前驅物比例調控與氧化鋅奈米柱元件表現關係 66 4.4.2 氧化鋅奈米柱之形貌分析與形貌參數量化 69 4.4.3 綜合討論與主動層滲入探討 73 4.5 結論 79 4.6 參考資料 79 第五章 利用金奈米粒子搭配氧化鋅奈米結構增進載子收集與傳輸 82 5.1 金奈米粒子對有機太陽能電池應用 82 5.1.1 金屬奈米粒子之光吸收增進原理 83 5.1.2 電漿效應於有機太陽能電池之應用 84 5.1.3 低能隙高分子材料PTB7介紹 87 5.2 研究動機 88 5.3 元件製作流程 89 5.3.1 溶液配製 90 5.3.2 元件製作流程 91 5.4 透過溶劑選擇與添加劑以及氧化鋅奈米柱使用以優化元件 94 5.5 以適當金奈米粒子粒徑添加結合氧化鋅奈米柱 97 5.5.1 實驗目的 97 5.5.2 不同金奈米粒子濃度使用與元件表現關係 98 5.6 複合不同金奈米粒子粒徑添加結合氧化鋅奈米柱最佳化 107 5.6.1 實驗目的 107 5.6.2 金奈米粒子施予量控制與元件表現關係 108 5.6.3 電洞傳輸層厚度控制與元件表現關係 112 5.7 結論 116 5.8 參考資料 116 第六章 結論與未來展望 121 6.1 結論 121 6.2 未來展望 122 | |
| dc.language.iso | zh-TW | |
| dc.subject | 添加劑 | zh_TW |
| dc.subject | 高分子太陽能電池 | zh_TW |
| dc.subject | 溶液製程 | zh_TW |
| dc.subject | 倒置結構 | zh_TW |
| dc.subject | 低能隙材料 | zh_TW |
| dc.subject | 形貌控制 | zh_TW |
| dc.subject | 混合溶劑 | zh_TW |
| dc.subject | 氧化鋅奈米柱 | zh_TW |
| dc.subject | 載子傳輸 | zh_TW |
| dc.subject | 金屬表面電漿效應 | zh_TW |
| dc.subject | solution process | en |
| dc.subject | carrier transport | en |
| dc.subject | polymer solar cells | en |
| dc.subject | ZnO nanorods | en |
| dc.subject | additives | en |
| dc.subject | mixed solvent | en |
| dc.subject | morphology control | en |
| dc.subject | low-bandgap | en |
| dc.subject | inverted structure | en |
| dc.subject | particle scattering | en |
| dc.subject | localized surface plasmonic resonance | en |
| dc.title | 低成本倒置有機太陽能電池載子傳輸效益改善與分析 | zh_TW |
| dc.title | Carrier Transport Improvement and Analysis of Low-cost Inverted Structural Organic Photovoltaics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳志毅(Chih-I Wu),黃鼎偉(Ding-wei Huang),吳肇欣(Chao-Hsin Wu) | |
| dc.subject.keyword | 高分子太陽能電池,溶液製程,倒置結構,低能隙材料,形貌控制,混合溶劑,添加劑,氧化鋅奈米柱,載子傳輸,金屬表面電漿效應, | zh_TW |
| dc.subject.keyword | polymer solar cells,solution process,inverted structure,low-bandgap,morphology control,mixed solvent,additives,ZnO nanorods,carrier transport,localized surface plasmonic resonance,particle scattering, | en |
| dc.relation.page | 127 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
