請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60606完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鐘仁賜 | |
| dc.contributor.author | Yen-Tin Kuo | en |
| dc.contributor.author | 郭彥廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:23:11Z | - |
| dc.date.available | 2015-09-02 | |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | Aber, J.D. and C.A. Federer. 1992. A generalized, lmped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia 92: 463-474.
Ball, D.F. 1964. Loss-on-ignition as estimate of organic matter + organic carbon in non-calcareous Soils. Journal of Soil Science 15: 84-92. Beadle, N.C.W. 1954. Soil Phosphate and the delimitation of plant communities in Eastern Australia. Ecology 35: 370-375. Blanchet, F.G., P. Legendre, and D. Borcard. 2008. Forward selection of explanatory variables. Ecology 89: 2623-2632. Bond, W.J. 2008. What limits trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics 39: 641-659. Bond, W.J. 2010. Do nutrient-poor soils inhibit development of forests? A nutrient stock analysis. Plant and Soil 334: 47-60. Brady, N.C. and R.R. Weil. 2010. Soil organic matter. In 'Elements of the Nature and Properties of Soils', 3rd (ed.). pp. 316-395. Pearson Educational International, New Jeresy, USA. Brunet, J., K. Valtinat, M.L. Mayr, A. Felton, M. Lindbladh, and H.H. Bruun. 2011. Understory succession in post-agricultural oak forests: Habitat fragmentation affects forest specialists and generalists differently. Forest Ecology Management 262: 1863-1871. Budke, J.C., J.A. Jarenkow, and A.T. de Oliveira-Filho. 2007. Relationships between tree component structure, topography and soils of a riverside forest, Rio Botucarai, Southern Brazil. Plant Ecology 189: 187-200. Cardinale, B.J., D.S. Srivastava, J.E. Duffy, J.P. Wright, A.L. Downing, and M. Sankaran. 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989-992. Chapman, H.D. 1965. Cation exchange capacity. In “Methods of Soil Analysis Part 2”, C.A. Black (ed.). pp. 891-901. Madison, Wisconsin, USA. Chave, J., C. Andalo, S. Brown, M.A. Cairns, J.Q. Chambers, and D. Eamus. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87-99. Chirino, I., L. Condron, R. McLenaghen, and M. Davis. 2010. Effects of plantation forest species on soil properties. In 'Soil Solutions for a Changing World: Proceedings of the 19th World Congress of Soil Science', pp. 1-6. Brisbane, Australia. Condit, R., P.S. Ashton, P. Baker, S. Bunyavejchewin, S. Gunatilleke, and N. Gunatilleke. 2000. Spatial patterns in the distribution of tropical tree species. Science 288: 1414-1418. Cornwell, W.K., J.H.C. Cornelissen, K. Amatangelo, E. Dorrepaal, V.T. Eviner, and O. Godoy. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11: 1065-1071. Cowling, R.M., P.M. Holmes, and A.G. Rebelo. 1992. Plant diversity and endemism. In 'The Ecology of Fynbos: Nutrients, Fire and Diversity', R. M. Cowling (ed.). pp. 62-112. Oxford University Press, New York, USA. Castilho, C.V., W.E. Magnusson, R.N.O. de Araujo, R.C.C. Luizao, A.P. Lima, and N. Higuchi. 2006. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. Forest Ecology and Management 234: 85-96. DeWalt, S.J. and J. Chave. 2004. Structure and biomass of four lowland Neotropical forests. Biotropica 36: 7-19. Dupuy, J.M., J.L. Hernandez-Stefanoni, R.A. Hernandez-Juarez, E. Tetetla-Rangel, J.O. Lopez-Martinez, and E. Leyequien-Abarca. 2012. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica 44: 151-162. Echambadi, R. and J.D. Hess. 2007. Mean-centering does not alleviate collinearity problems in moderated multiple regression models. Marketing Science 26: 438-445. Garnier, E., J. Cortez, G. Billes, M.L. Navas, C. Roumet, and M. Debussche. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630-2637. Gomes, A.C.S. and F.J. Luizao. 2012. Leaf and Soil Nutrients in a Chronosequence of Second-Growth Forest in Central Amazonia: Implications for Restoration of Abandoned Lands. Restoration Ecology 20: 339-345. Guariguata, M.R. and R. Ostertag. 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management 148: 185-206. Harms, K.E., R. Condit, S.P. Hubbell, and R.B. Foster. 2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89: 947-959. Hooper, D.U., F.S. Chapin, J.J. Ewel, A. Hector, P. Inchausti, and S. Lavorel. 2005. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs 75: 3-35. Jobbagy, E.G. and R.B. Jackson. 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53: 51-77. Katabuchi, M., H. Kurokawa, S.J. Davies, S. Tan, and T. Nakashizuka. 2012. Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. Journal of Ecology 100: 643-651. Keith, H., B.G. Mackey and D.B. Lindenmayer. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proceedings of the National Academy of Sciences 106: 11635-11640. King, H.B. 1986. THe classificaiton of two forest soils in LienHauChi experimental watershed: An attempt ot use USDA comprehensive system of soil classification. Taiwan Forestry Research Institute 1:155-176. Kirkby, M.J. 1985. A Basis for Soil-Profile Modeling in a Geomorphic Context. Journal of Soil Science 36: 97-121. Kooijman, A.M. and E. Cammeraat. 2010. Biological control of beech and hornbeam affects species richness via changes in the organic layer, pH and soil moisture characteristics. Functional Ecology 24: 469-477. Lajtha, K., C.T. Driscoll, W.M. Jarrell, and E.T. Elliott. 1999. Soil phosphorus: characterization and total element analysis. In 'Standard soil methods for long-term ecological research'. pp. 115-142. Oxford University Press, New York, USA. Laurance, W.F., P.M. Fearnside, S.G. Laurance, P. Delamonica, T.E. Lovejoy, and J. Rankin-de Merona. 1999. Relationship between soils and Amazon forest biomass: A landscape-scale study. Forest Ecology and Management 118: 127-138. Legendre, P. and H.J.B. Birks. 2012. Tracking environmental change using lake sediments. In 'From Classical to Canonical Ordination'. pp. 201-248. Springer Science, New York, USA.. Lewis, S.L., G. Lopez-Gonzalez, B. Sonke, K. Affum-Baffoe, T.R. Baker, and L.O. Ojo. 2009. Increasing carbon storage in intact African tropical forests. Nature 457: 1003-1006. Lin, C.C. and H.H. Wang. 2010. Subtropical forest research plot. Taiwan Journal of Forest Science 25: 1-2. Lindenmayer, D.B. 2009. Forest Wildlife Management and Conservation. The Year in Ecology and Conservation Biology 1162: 284-310. Chang L.W., J.L. Hwang, S.T. Chiu, H.H. Wang, K.C. Yang, H.Y. Chang, and C.F. Hsieh. 2010. Species composition, size-class structure, and diversity of the Lienhuachih Forest Dynamics Plot in a subtropical evergreen broad-leaved forest in central Taiwan. Taiwan Journal of Forest Science 25: 81-95. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J.P. Grime, and A. Hector. 2001. Ecology - Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294: 804-808. McEwan, R.W., Y.C. Lin, I.F. Sun, C.F. Hsieh, S.H. Su, and L.W. Chang. 2011. Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecology and Management 262: 1817-1825. Mclean, E. O. 1982. SOil pH and lime requirement. In 'Methods of Soil Analysis Part 2 Chemical and Mircobiological Properties' 2nd (ed.), A. L. Page (ed.). pp. 199-224. Academic Press, New York, USA. Mehlich, A. 1984. Mehlich-3 Soil Test Extractant - a Modification of Mehlich-2 Extractant. Communication Soil Science and Plant Analysis Journal 15: 1409-1416. Mengel, K., H. Kosegarten, E.A. Kirkby, and T. Appel. 2001. The soil as a plant nutrient medium. In 'Principles of Plant Nutrition', 5nd (ed.). pp. 15-110. Kluwer Academic Publishers, Dordrecht, Netherlands. Mills, A.J., A.V. Milewski, M.V. Fey, A. Grongroft, A. Petersen, and C. Sirami. 2013. Constraint on woody cover in relation to nutrient content of soils in western southern Africa. Oikos 122: 136-148. Mokany, K., J. Ash and S. Roxburgh. 2008. Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. Journal of Ecology 96: 884-893. Mouillot, D., S. Villeger, M. Scherer-Lorenzen, and N.W.H. Mason. 2011. Functional Structure of Biological Communities Predicts Ecosystem Multifunctionality. Plos One 6. Newton, A.C. and V. Kapos. 2003. Biodiversity indicators in national forest inventories. UNASYLVA-FAO- 56: 56-64. Nguyen, B.T. and J. Lehmann. 2009. Black carbon decomposition under varying water regimes. Organic Geochemistry 40: 846-853. Noss, R.F. 1999. Assessing and monitoring forest biodiversity: A suggested framework and indicators. Forest Ecology and Management 115: 135-146. Orians, G.H. and A.V. Milewski. 2007. Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biological Reviews 82: 393-423. Paoli, G.D., L.M. Curran, and J. Slik. 2008. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155: 287-299. Perroni‐Ventura, Y., C. Montana, and F. Garcia‐Oliva. 2006. Relationship between soil nutrient availability and plant species richness in a tropical semi‐arid environment. Journal of Vegetation Science 17: 719-728. Ponge, J.F. 2003. Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry 35: 935-945. Poorter, L., L. Bongers, and F. Bongers. 2006. Architecture of 54 moist-forest tree species: Traits, trade-offs, and functional groups. Ecology 87: 1289-1301. Poorter, L. and K. Kitajima. 2007. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88: 1000-1011. Rhoades, J.D. 1982. Soluble salts. In ”Method of Soil Analysis Part 2 Chemical and Microbiological Properties”, 2nd (ed.). A. L. Page (ed.). pp. 167-178. Academic Press, New York, USA. Rhodes, J.R., C.A. McAlpine, A. Zuur, G. Smith, and E. Ieno. 2009. GLMM applied on the spatial distribution of koalas in a fragmented landscape. In “Mixed Effects Models and Extensions in Ecology with R”, M. Gail, K. Krickeber, J. Samet, A.Tsiatis, and W. Wong (ed.). pp. 473. Springer Science, New York, USA. Russo, S.E., S.J. Davies, D.A. King, and S. Tan. 2005. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology 93: 879-889. Sankaran, M., N.P. Hanan, R.J. Scholes, J. Ratnam, D.J. Augustine, and B.S. Cade. 2005. Determinants of woody cover in African savannas. Nature 438: 846-849. Schellberg, J. and L.D. Pontes. 2012. Plant functional traits and nutrient gradients on grassland. Grass and Forage Science 67: 305-319. Schollenberger, C.J. and R.H. Simon. 1945. Determination of exchange capacity and exchangeable bases in soil - ammonium acetate method. Soil Science 59: 13-24. Shand, C.A., B.L. Williams, and G. Coutts. 2008. Determination of N-species in soil extracts using microplate techniques. Talanta 74: 648-654. Solon, J., M. Degorski, and E. Roo-Zielinska. 2007. Vegetation response to a topographical-soil gradient. Catena 71: 309-320. Stark, J.M. 1994. Causes of soil nutrient heterogeneity at different scales. In “Exploitation of Environmental Heterogeneity by Plants”, M.M. Caldwell and R.W. Pearcy (Ed.). Academic Press, San Diego, USA. Thornton, P.E., B.E. Law, H.L. Gholz, K.L. Clark, E. Falge, and D.S. Ellsworth. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agricultural and Forest Meteorology 113: 185-222. Trudgill, S.T. 1988. Soil and vegetation systems. Oxford University Press, New York, USA. Valencia, R., R. Condit, H.C. Muller-Landau, C. Hernandez, and H. Navarrete. 2009. Dissecting biomass dynamics in a large Amazonian forest plot. Journal of Tropical Ecology 25: 473-482. Valencia, R., R.B. Foster, G. Villa, R. Condit, J.C. Svenning, and C. Hernandez. 2004. Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology 92: 214-229. Weatherburn, M. 1967. Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39: 971-974. Webb, C.T., J.A. Hoeting, G.M. Ames, M.I. Pyne, and N.L. Poff. 2010. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13: 267-283. Whittingham, M.J., P.A. Stephens, R.B. Bradbury, and R.P. Freckleton. 2006. Why do we still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology 75: 1182-1189. Xia, J.Y. and S.Q. Wan. 2008. Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist 179: 428-439. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60606 | - |
| dc.description.abstract | 森林為地球上物種豐富度最高的地方,且支持各種不同生態系統的相互運作,其中植物物種的森林多樣性,更是扮演著重要的角色。因此,藉由瞭解與維護植物多樣性,可達到森林保育管理和森林永續經營之目標。樹木標籤和樹木地上部之生質量常用來鑑定森林狀態,藉由樹木標籤可瞭解不同樹種的分佈,而樹木地上部之生質量則是可作為森林碳循環的指標。本試驗地點位於台灣南投縣蓮華池25公頃森林動態園區,於625個20 x 20 m的網格中隨機選取102個採樣點,採集0-5 cm和5-15 cm之土壤各500 g,分析項目為pH、導電度、有機物含量、氯化鉀溶液可萃取銨態氮和硝酸態氮、有效性磷和鉀、陽離子交換容量、可交換性鈣、鎂、鉀和土壤保水度。以每個採樣點為中心,計算半徑10 m範圍內總物種數為物種豐富度 (species richness),計算樹木數目為立木數 (tree abundance),並計算每公頃內所有樹木之地上部生質量,以主成分分析 (principle component analysis)、多元線性回歸 (multiple linear regression)和冗餘分析 (redundancy analysis) 探討園區內各項地型與土壤因子與林木豐富度及生質量之關聯。多元線性回歸的結果顯示,5-15 cm土壤因子對樹木物種豐富度和立木數中的變異較有影響力,而0-5 cm土壤則對樹木地上部生質量的變異較有影響力。進一步利用冗餘分析,以同時探討土壤和地形對樹木物種豐富度、立木數和樹木之地上部生質量的影響,結果顯示5-15 cm較0-5 cm的土壤可以解釋較多的總變異。5-15 cm土壤因子中以陽離子交換容量和導電度之影響力最大,而0-5 cm的土壤因子中有以機質含量和平均海拔之影響力最大。藉以推論,蓮華池森林動態園區 0-5 cm土壤的養分含量主要和有機質含量有關,並直接影響樹木的地上部生質量,而其5-15 cm土壤的養分含量和其陽離子交換容量的高低有關,而不同的養分含量有利於某些樹木物種的生長,因此,5-15 cm土壤的陽離子交換容量影響樹木物種的分佈並有助於樹木和土壤間的穩定關係。 | zh_TW |
| dc.description.abstract | Forest plant diversity is the basis of many ecological services. Thus understanding forest plant diversity for the purpose of conservation, management, and sustainable use becomes an important topic for many ecologists. Tree tagging and tree aboveground biomass are often used as indicators to examine the quality of a forest. Tree tagging shows the overall distribution of the tree species, while aboveground biomass is an important carbon pool in the forest ecosystem. In this study, 102 sampling sites were randomly chosen in the Lienhuachih Forest Dynamic Plot in Nanto, Taiwan. In each sampling site, 0-5 and 5-15 cm soil were collected, and soil pH, soil organic matter (SOM), electrical conductivity (EC), cation exchange capacity (CEC), available potassium and phosphorous, ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), exchangeable calcium, magnesium and potassium, and water holding capacity (WHC) were measured. Species richness, abundance, and aboveground biomass were calculated within the circle of 10 m radius around the sampling site to study the effect of soil properties of different soil layers and topography on tree distribution. The results of multiple regression showed that 0-5 cm soil explained more variation in aboveground biomass, while 5-15 cm soil explained more variation in tree species richness and abundance. Redundancy analysis showed that 5-15 cm soil exerted a greater overall influence on species distribution and aboveground biomass. The influence of 0-5 cm soil was mostly associated with SOM, while the influence of 5-15 cm soil was mostly associated with CEC and EC. Overall, SOM contributes to the nutrient availability of 0-5 cm soil, and the available nutrient contents directly affect aboveground biomass. The CEC of 5-15 cm soil becomes an important factor in determining the availability of certain nutrients leached from 0-5 cm soil. Thus the presence and absence of certain nutrients in 5-15 cm soil might favor the growth of certain tree species, and CEC subsequently shapes the overall species distribution and contribute to the stability of soil-tree species relationship. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:23:11Z (GMT). No. of bitstreams: 1 ntu-102-R00623030-1.pdf: 1614387 bytes, checksum: 2a10f89b7a6653b63d19d96f293ac49b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Table of Content
摘要 I Abstract III Acknowledgement V Table of Content VI Figures and Tables VIII 1. Introduction 1 1.1 Forest conservation and management 1 1.2 Ordination methods 1 1.3 Forest dynamic plot 2 1.4 Purpose 2 2. Literature Reviews 3 2.1 Forest indicator 3 2.2 Biodiversity and productivity 3 2.3 Biodiversity and soil 5 2.4 Aboveground biomass and soil 6 3. Materials and Methods 8 3.1 Study site 8 3.2 Soil sample collection 9 3.3 Soil analysis 11 3.4 Tree distribution and aboveground biomass 14 3.5 Topography 15 3.6 Data analysis 15 4. Results and Discussion 17 4.1 Soil properties of Lienhuachih 17 4.2 Principle component analysis of soil properties 22 4.3 Spatial autocorrelation within each variable 26 4.4 Multiple linear regression 27 4.5 Multiple linear regression by stepwise selection 33 4.6 Redundancy analysis 40 4.7 Comprehensive discussion 46 5. Conclusion 50 Reference 51 Appendix 1 59 Appendix 2 63 Appendix 3 68 Appendix 4 73 Appendix 5 76 Appendix 6 79 | |
| dc.language.iso | en | |
| dc.subject | 土壤養分狀態 | zh_TW |
| dc.subject | 植物多樣性 | zh_TW |
| dc.subject | 主成分分析 | zh_TW |
| dc.subject | 多元線性回歸 | zh_TW |
| dc.subject | 冗餘分析 | zh_TW |
| dc.subject | principle component analysis | en |
| dc.subject | soil nutrient state | en |
| dc.subject | redundancy analysis | en |
| dc.subject | multiple linear regression | en |
| dc.subject | plant diversity | en |
| dc.title | 蓮華池森林動態樣區之地形與土壤性質對於林木豐富度及生質量之影響 | zh_TW |
| dc.title | Effect of topography and soil properties on tree species richness, abundance, and aboveground biomass in Lienhauchih forest dynamic plot | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳建德 | |
| dc.contributor.oralexamcommittee | 邱志郁,江智民,鄭智馨 | |
| dc.subject.keyword | 土壤養分狀態,植物多樣性,主成分分析,多元線性回歸,冗餘分析, | zh_TW |
| dc.subject.keyword | soil nutrient state,plant diversity,principle component analysis,multiple linear regression,redundancy analysis, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
