請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60597完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱國瑞(Kwo-Ray Chu) | |
| dc.contributor.author | Shao-chi Chou | en |
| dc.contributor.author | 周劭祁 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:22:52Z | - |
| dc.date.available | 2013-08-22 | |
| dc.date.copyright | 2013-08-22 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | [1] K.R. Chu, “The Electron Cyclotron Maser,” Rev. Mod. Phys. 76, 489 (2004).
[2] 朱國瑞, 張存續, 陳仕宏, ”電子迴旋脈射---原理與應用,”物理雙月刊, 四月號(2006). [3] 劉蕙娜, 朱國瑞, 陳錦輝, ”單陽極磁控電子鎗研究—理論探討及設計實例,” 科學發展月刊 (1990). [4] 楊滋德, 杜金城, 朱國瑞, “單陽極磁控電子鎗研究—製造及測試,” 科學發展月刊 (1990). [5] 劉蕙娜, “磁控槍的特性分析與設計方法,” 清華大學碩士論文 (1988). [6] 陳錦輝, “電子槍模擬分析,” 清華大學碩士論文 (1989). [7] 黃真, “單陽極與雙陽極磁控電子槍的敏感度比較,” 清華大學碩士論文 (1990). [8] 曹明雄, “皮爾斯型電子鎗 ( Pierce Gun ) 的理論探討與數值模擬,” 清華大學碩士論文 (1995). [9] 洪培修, “Ka頻段電子光學系統—雙陽極Pierce型電子鎗之設計,” 清華大學碩士論文 (2000). [10] Anderson, James Paul, et al., 'Design and Emission Uniformity Studies of a 1.5-MW Gyrotron Electron Gun,' IEEE Trans. Plasma Sci., 30(6), 2117-2123 (2002). [11] S. Seely, 'Work function and temperature,' Phys. Rev., 59(1) (1941). [12] I. Langmuir and K. B. Blodgett, “Currents Limited by Space Charge between Coaxial Cylinders,” Phys. Rev., 22(4) (1923). [13] L. R. Barnett, N. C. Luhmann Jr., C. C. Chiu, and K. R. Chu, “Relativistic Performance Analysis of an Advanced High-Current-Density Magnetron Injection Gun, ” Phys. Plasmas, 16, 093111 (2009). [14] C. P. Yuan, T. H. Chang, N. C. Chen, and Y. S. Yeh, 'Magnetron Injection Gun for a Broadband Gyrotron Backward-Wave Oscillator', Phys. Plasmas, 16, 073109 (2009). [15] V. Gaponov, V. A. Flyagin, A. L. Gol’Denberg, G. S. Nusinovich, S.E. Tsimring, V. G. Usov, and S. N. Vlasov, “Powerful Millimetre-Wave Gyrotrons,” Int. J. Electron., 51, 277 (1981). [16] J. M. Baird and W. Lawson, “Magnetron Injection Gun (MIG) Design for Gyrotron Applications,” Int. J. Electron, 61, 953 (1986). [17] S. E. Tsimring,”On the Spread of Velocities in Helical Electron Beams,” Radiophys. Quantum Electron, 15, 952 (1972). [18] V.K. Lygin and S.E. Tsimring. “Trajectory Analysis of Extended Helical Electron Beams with Allowance for Space-Charge Forces,” Radiophys. Quantum Electron, 21, 948 (1978). [19] W. Lawson, V. Specht, “Design Comparison of Single-Anode and Double-Anode 300-MW Magnetron Injection Gun,” IEEE Trans. Electron Devices, 40, 1322 (1993). [20] A.S. Gilmour, “Microwaves Tubes,” The Artech House Microwave Library. (1986). [21] A.S. Gilmour, “Principles of Traveling Wave Tubes,” The Artech House Microwave Library (1999). [22] A.S. Gilmour, “Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons,” The Artech House Microwave Library (2011). [23] J. D. Jackson, “Classical Electrodynamics (3rd ed.),” Wiley, New York, pp.592-596 (1998). [24] G.S. Nusinovich, “Introduction to the Physics of Gyrotrons,” The John Hopkins University Press (2004). [25] S.E. Tsimring, “Electron Beams and Microwave Vacuum Electronics,” Wiley, New York (2007). [26] W.B. Herrmannsfeldt, “Electron Trajectory Program,” SLAC-REPORT 226, Stanford Linear Accelerator Center (1979). [27] W.B. Herrmannsfeldt, “Egun-An Electron Optics and Gun Design Program,” SLAC-REPORT 331, Stanford Linear Accelerator Center (1988). [28] L.D. Landau and E.M. Lifshitz, “Mechanics (3rd ed.),” Pergamon Press, Oxford, pp.138-141 (1976). [29] Sedlacek and Miroslav, “Electron Physics of Vacuum and Gaseous Devices,” Wiley, New York (1996). [30] R.K. Pathria and Paul D. Beale, “Statistical Mechanics (3rd ed.),” Pergamon Press, Oxford, pp.250-255 (2011). [31] N. C. Chen, “TE01 Gyrotron Backward-Wave Oscillator with Mode Selective Circuit,” Ph.D. thesis, National Tsing Hua Univ., Hsinchu, Taiwan (2008). [32] 應根裕, ”電子光學,” 亞東書局 (1989). [33] 王金淑, 周美玲, ”電子發射材料,” 北京工業大學出版社 (2008). [34] M. Szilagyi, “Electron and Ion Optics, ” Plenum, New York (1988). [35] S.I. Molokovsky and A.D. Sushkov, “Intense Electron and Ion Beams,” Springer (2005). [36] C. D. Marchewka, “Non-uniform Emission Study of a Magnetron Injection Gun,” M.S. thesis, Elect. Eng. Comput. Sci. Dept. MIT, USA (2006). [37] N. C. Chen, C. F. Yu, C. P. Yuan, and T. H. Chang, “A Mode-Selective Circuit for TE01 Gyrotron Backward-wave Oscillator with Wide-Tuning Range,” Appl. Phys. Lett. 94, 101501 (2008). [38] A. Ralston, H. S. Wilf, “Mathematical Methods for Digital Computers,” Wiley, New York (1960). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60597 | - |
| dc.description.abstract | 本論文前半部主要敘述並探討操作於溫度限制 ( temperature limited ) 條件下的電子光學系統—單陽極 ( single-anode ) 磁控注入電子鎗 ( magnetron injection gun, MIG ) 理論及計算,後半部則以2-l/2維(表示二維的電磁場及三維的粒子運動)電子鎗模擬程式EGUN ( EGUN-An Electron Optics and Gun Design Program, W.B. Herrmannsfeldt, 1989 ) 製作電子鎗的設計範例、並對實驗室目前使用的電子鎗進行數值模擬,最後加入優化後的新電子鎗結構以減低電子束的速度發散。 | zh_TW |
| dc.description.abstract | This thesis is about the design and theoretical simulation of a type of electron-optical system—single-anode magnetron injection guns ( MIGs ), which operate in the temperature limited regime of emission. The first half of this thesis discusses some physical principles applied for MIGs, and for the second half, I’ll present a MIG design example, and simulation results for the MIG being used in NTU applied electrodynamics lab, together with a modified MIG structure based on it to minimize the velocity spread. Theoretical results were obtained by employing a 2-l/2 dimension electron gun code ( EGUN ). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:22:52Z (GMT). No. of bitstreams: 1 ntu-102-R00222086-1.pdf: 8365693 bytes, checksum: f876c9e4fc8e06a84b657ab216f12991 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 ix Chapter 1 緒論 1 Chapter 2 MIG相關的公式及物理探討 5 2.1 熱陰極的發射原理 5 2.2 離子體物理學中的緩漸不變數 ( adiabatic invariant ) 14 2.3 MIG的粗略設計公式 ( trade-off equations ) 16 2.4 磁力鏡 ( magnetic mirror ) 效應 22 2.5 速度發散之成因 24 2.6 電子的相對論性運動方程推導[26] 30 Chapter 3 電腦模擬程式的數值計算 36 3.1 程式概論 36 3.1.1 基本方程組與迭代法[3] 36 3.1.2 空間電位的計算 38 3.1.3 外加磁場的計算 40 3.1.4 電子運動軌跡的計算[26] 51 3.1.5 電子束空間電荷場 ( space charge field ) 的考慮 54 3.1.6 空間電荷密度的計算 56 3.2 數值計算的收斂 58 Chapter 4 MIG的設計範例 60 4.1 MIG的設計結果 60 4.2 MIG的敏感度分析 66 Chapter 5 台大應用電磁實驗室使用的MIG 71 5.1 劉蕙娜所設計MIG的結構 71 5.2 實驗室MIG的敏感度分析 76 5.3 固定 MIG 的縱橫速度比 80 5.4 修改後的MIG結構(僅修改陰極) 82 5.5 修改後的MIG之敏感度分析 88 Chapter 6 結論 92 參考資料 93 附錄A. Maupertuis’ principle 於電子光學的應用 A-1 附錄B. 緩漸不變數的推導[25][28] B-1 附錄C. 軸外電位(磁場)與軸上電位(磁場)的關係式 C-1 附錄D. 圓柱座標下的有限差分方程推導[26][29] D-1 附錄E. Runge-Kutta法的推導[9][38] E-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 速度發散 | zh_TW |
| dc.subject | 2-l/2維電子鎗模擬 | zh_TW |
| dc.subject | 單陽極 | zh_TW |
| dc.subject | 磁控注入電子鎗 | zh_TW |
| dc.subject | 溫度限制 | zh_TW |
| dc.subject | 電子光學系統 | zh_TW |
| dc.subject | 2-l/2 dimension electron gun code | en |
| dc.subject | single-anode | en |
| dc.subject | magnetron injection gun | en |
| dc.subject | temperature limited | en |
| dc.subject | velocity spread | en |
| dc.subject | electron-optical system | en |
| dc.title | 單陽極MIG型電子鎗之研究 | zh_TW |
| dc.title | Study of Single-Anode Magnetron Injection Guns | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳寬任(Kuan-Ren Chen),張存續(Tsun-Hsu Chang),陳仕宏(Shih-Hung Chen) | |
| dc.subject.keyword | 電子光學系統,溫度限制,磁控注入電子鎗,單陽極,2-l/2維電子鎗模擬,速度發散, | zh_TW |
| dc.subject.keyword | electron-optical system,single-anode,magnetron injection gun,temperature limited,velocity spread,2-l/2 dimension electron gun code, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
