Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60587
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊恩誠
dc.contributor.authorYu-Hsi Hsiaoen
dc.contributor.author蕭育席zh_TW
dc.date.accessioned2021-06-16T10:22:32Z-
dc.date.available2018-08-27
dc.date.copyright2013-08-27
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation王重雄、羅竹芳、乃育昕、王智源、陳韻如等。 2009。 蜂群衰竭失調症.台灣昆蟲 29: 119-138。
古金台。2004。台灣小菜蛾微粒子蟲分離株 (Nosema sp. PX1 & 2) 之特性研究。台灣大學昆蟲學系碩士論文。
安 奎、何鎧光、陳裕文。1997。養蜂學。國立編譯館編輯。華香園出版社出版。
詹琇瑩。2008。分析紋白蝶和甜菜夜蛾微孢子蟲分離株之 rDNA 親緣關係。台灣大學昆蟲學系碩士論文
Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, et al. 2005. The new higher level classification of eukaryoteswith emphasis on the taxonomy of protists.J Eukaryot Microbiol 52: 399-451.
An JK, Ho KK. 1980. Studies on Nosema disease of honey bee (Apis mellifera). The seasonal variation of Nosema apis Zander in Taiwan. Honeybee Sci. (Jpn.): 157-158
Amdam GV,Aase AL, Seehuus SC Fondrk MK, Norgerg K, et al. 2005. Social reversal of immunosenescence in honey bee workers.Exp Gerontol 40: 939-947.
Ardila-Garcia AM, Fast NM. 2012. Microsporidian infection in a free-living marine nematode. Eukaryot Cell 11: 1544-51.
Becnel JJ and Andreadis TG. 1999. Microsporridia in insects. In The Microsporidia and Microsporidiosis (et. Wittner M and Weiss LM), pp. 447-501. American Society for Microbiology Press, Washington, D.C.
Bohne W, Ferguson DJ, Kohler K, Gross U. 2000. Developmental expression of atandemly repeated, glycine- and serine-rich spore wall protein in themicrosporidian pathogen Encephalitozoon cuniculi. Infect. Immun. 68, 2268–2275.
Brosson D, Kuhn L, Prensier G, Vivares CP, Texier C. 2005. The putative chitin deacetylase of Encephalitozoon cuniculi: a surface protein implicated in microsporidian spore-wall formation. FEMS Microbiol Lett 247: 81-90.
Couzinet S, Cejas E, Schittny J, Deplazes P, et al. 2000. Phagocyticuptake of Encephalitozoon cuniculi by nonprofessionalphagocytes. Infect. Immun68, 6939–6945.
Chen YP, Pettis JS, Collins A, Feldlaufer MF. 2006. Prevalence and transmission ofhoneybee viruses. Appl Environ Microbiol 72: 606-11.
Chen YW, Chung WP, Wang CH, Solter LF, Huang WF. 2012. Nosema ceranae infection intensity highly correlates with temperature. J Invertebr Pathol 111:264-7.
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, et al. 2009. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 5:e1000466.
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, et al. 2007. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318: 283-287.
Curgy JJ, Vavra J, Vivares C. 1980. Presence of ribosomal RNAs with prokaryotic properties in Microsporidia, eukaryotic organisms. Biol. Cell. 38: 49-51.
Didier ES, Weiss LM. 2006. Microsporidiosis: current status. Curr Opin Infect Dis. 19: 485-492.
Franzen C, Muller A, Hartmann P, Salzberger B. 2005. Cellinvasion and intracellular fate of Encephalitozoon cuniculi(Microsporidia). Parasitology130, 285–292.
Fries I, Ekbohm G, Villumstad E. 1984. Nosema apis, sampling techniques and honey yield. J.Apicult. Res. 23: 102-105.
Fries I, Feng F, Silva A, Slemenda SB, Pieniazek NJ. 1996. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasites of the Asian honey bee Apis ceranae (Hymenoptera, Apidae). Europ. J. Protistol. 32: 356-365
Fries I. 2010. Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103 Suppl 1:S73-9.
Foucault C, Drancourt M. 2000. Actin mediates Encephalitozoon intestinalis entry into the human enterocyte-like cell line, Caco-2. Microb Pathog 28: 51-58.
Hayman JR, Hayes SF, Amon J, Nash TE. 2001. Developmental expression oftwo spore wall proteins during maturation of the microsporidianEncephalitozoon intestinalis. Infect. Immun. 69, 7057–7066.
Hayman J R, Southern TR, Nash TE.2005. Role of sulfatedglycans in adherence of the microsporidian Encephalitozoonintestinalis to host cells in vitro. Infect. Immun.73, 841–848.
Higes M, Martin-Hernandez R, Meana A, 2006. Nosema ceranae, a new microsporidian parasitein honeybees in Europe. J. Invertebr. Pathol. 92, 93-95.
Higes M, Garcia-Palencia P, Martin-Hernandez R, Meana A. 2007. Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94:211-7.
HigesM, Garcia-Palencia P, Botias C, Meana A, Martin-Hernandez R,et al. 2010. The differential development ofmicrosporidia infecting worker honey bee (Apis mellifera) at increasing incubation temperature. Environ Microbiol Rep 2: 745-748.
Huang WF, Tsai SJ, Lo CF, Soichi Y, Wang CH. 2004. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genet Biol 41:473-81.
Huang WF, Jiang JH, Chen YW, Wang CH. 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38: 30-37
Huang WF, Solter LF. 2013. Comparative development and tissue tropism of Nosema apis and Nosema ceranae. J Invertebr Pathol 113:35-41.
Huang WF, Solter LF, Yau PM, Imai BS. 2013. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog 9(3):e1003185.
Ishihara R, Hayashi Y. 1986. Some properties of ribosomes from the sporoplasm of Nosema bombycis. J Invertebr Pathol 11: 337-385.
James TY,Kauff F, Schoch CL, Matheny PB, Hofstetter V,et al. 2006. Reconstructing the early evolution of Fungi using a six-gene phylogeny.Nature 443: 818-822.
Kashkarova LF, Khakhanov AI. 1980. Range of the hosts of the causative agent of pebrine (Nosema bombycis) in the mulberry silkworm. Parazitologiia 14:164-7.
Keeling PJ, Fast NM. 2002. Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93-116.
Keeling P. 2009. Five questions about Microsporidia. PLoS Pathog. 5:e1000489
Kent ML, Dawe SC, Speare DJ. 1995. Transmission of Loma salmonae (Microsporea) to Chinook salmon in sea water. Can. Vet. J. 36:98-101.
Kent ML. 2000. Marine netpen farming leads to infections with some unusual parasites. Int. J. Parasitol. 30: 321-326.
Klee J, Besana AM, Genersch E, Gisder S, Nanetti A,et al. 2007. Widespread
dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee,Apis mellifera. J Invertebr Pathol 96:1-10.
Li Y, Wu Z, Pan G, He W, Zhang R,et al. 2009. Identification of a novel spore wall protein (SWP26)from microsporidia Nosema bombycis. Int. J. Parasitol. 39:391–398.
Li Z, Pan G, Li T, Huang W, Chen J, et al. 2012. SWP5, a spore wall protein, interacts with polar tube proteins in the parasitic microsporidian Nosema bombycis. Eukaryot Cell 11: 229-237.
Lo CF, Leu JH, Ho CH, Chen CH, Peng SE, et al. 1996. Detection of baculovirus associated with whitespot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org 25: 133-141
Martin-Hernandez R, Meana A, Garcia-Palencia P, Marin P, Botias C, et al. 2009. Effect of temperature on the biotic potential of honeybee microsporidia. Appl Environ Microbiol 75:2554-7.
Metenier G, Vivares CP. 2001. Molecular characteristics and physiology of microsporidia. Microbes Infect 3: 407-415.
Michener CD. 1974. The Social Behavior of the Bees. Cambridge (MA), Belknap Press of Harvard University Press. 404 pp.
Naegeli C. 1857. Uber die Krankheit der Seidenraupe und verwandte Organismen. Botan Zeit. 15: 760-761
Nicholas KB, Nicholas HB Jr., Deerfield. 1997. GeneDoc: Analysis and Visualization of Genetic Variation, EMBNEW. NEW 4: 14.
Oi DH, Briano JA, Valles SM, Williams DF. 2005. Transmission of Vairimorpha invictae (Microsporidia: Burenellidae) infections between red fire ant (Hymenoptera: Formicidae) colonies. J. Invertebr. Pathol. 88: 108-115
Peuvel-Fanget I, Polonais V, Brosson D, Texier C, Kuhn L, et al. 2006. EnP1 and EnP2, two proteins associated with theEncephalitozoon cuniculiendospore, the chitin-rich inner layer of themicrosporidian spore wall. Int. J. Parasitol. 36, 309–318.
Shen XQ. 1980. Biochemistry of Protozoan.Huadong TeacherUniversitypress,Wuhan.
Southern TR, Jolly CE, Hayman JR. 2006. Augmentation ofmicrosporidia adherence and host cell infection by divalentcations. FEMS Microbiol. Lett260, 143–149.
Southern TR, Jolly CE, Lester ME, Hayman JR. 2007. EnP1, a microsporidia spore wall protein that enablesspores to adhere and infect host cells in vitro. Eukaryot Cell6, 1354–1362.
Sprague V, Becnel JJ, et al. 1992. Taxonomy of phylum microspora. Crit Rev Microbiol 18: 285-395.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
Tsai SJ, Huang WF, Wang CH. 2005. Complete sequence and gene organization of the Nosema spodopterae rRNA gene. J Eukaryot Microbiol 52: 52-54.
Tsai YC, Solter LF, Wang CY, Fan HS, Chang CC, et al. 2009. Morphological and molecular studies of a microsporidium (Nosema sp.) isolated from the thee spot grass yellow butterfly, Eurema blanda arsakia (Lepidoptera: Pieridae). J Invertebr Pathol 100: 85-93.
United states department of Agriculture. 2010. Colony collapse disorder progress report.
vanEngelsdorp D, Underwood R, Caron D, Hayes JJ. 2007. An estimate of managed colony losses in the winter of 2006–2007: a report commissioned by the Apiary Inspectors of America. Am Bee J 147: 599–603.
vanEngelsdorp D, Hayes JJ, Underwood RM, Pettis J. 2008. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE 3:e4071.
vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E. et al. 2009. Colony collapse disorder: a descriptive study. PLoS One 4(8): e6481.
Vavra j and Larsson JIR. 1999. Structure of the microsporidia. In The Microsporidia and Microsporidiosis (et. Wittner M and Weiss LM), pp. 7-84. American Society for Microbiology Press, Washington (D.C)
Vivier E. 1975. The microsporidia of the protozoa. Protistology 11: 345-361.
Wilson EO. 1971. The Insect Societies. 3rd ed. Cambridge (MA), Belknap Press of Harvard University Press.
Winston M, Dropkin J, Taylor O. 1981. Demography and life history characteristics of two honey bee races (Apis mellifera). Oecologia, 48: 407-413.
Winston ML. 1987. The Biology of the Honey Bee. Cambridge (MA), Harvard University Press.
Wittner M and Weiss LM. 1999. The microsporidia and microsporidiosis.Washington (D. C.): ASMPress. 553 p.
Wu Z, Li Y, Pan G, Tan X, Hu J, et al. 2008. Proteomic analysis of spore wall proteins and identificationof two spore wall proteins from Nosema bombycis (Microsporidia).Proteomics 8:2447–2461.
Wu Z, Li Y, Pan G, Zhou Z, Xiang Z, et al. 2009. SWP25, a novel protein associated with the Nosema bombycis endospore. J Eukaryot Microbiol 56: 113-118.
Xu Y, Takvorian P, Cali A, Wang F, Zhang H, et al. 2006.Identification of a new spore wall protein fromEncephalitozoon cuniculi. Infect.Immun. 74, 239–247.
Yan PT, Gao SW. 1972. Honey bee nosema disease and pathology. Plant Prot. Bull., (14): 53-57.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60587-
dc.description.abstract蜂群衰竭失調症 (CCD) 之主要症狀為西方蜂 (Apis mellifera) 族群中,造成外勤蜂之大量損失,這種失調現象不只影響了蜜蜂產業,也同時影響授粉行為。到目前為止仍尚未找出確切的發生原因。東方蜂微粒子 (Nosema ceranae) 被認為是造成該失調症的可能元凶之一。東方蜂微粒子早期被認為只感染東方蜂 (A. ceranae),但目前已被發現普遍感染於世界各地西方蜂族群。蜜蜂之中腸為主要之感染部位。傳統上,診斷蜜蜂之微粒子病是利用光學顯微鏡檢查中腸是否有孢子。本研究之感染試驗中,以光學顯微鏡觀察只可在感染後第九天發現孢子的存在。為了發展感染初期的診斷以及偵測東方蜂微粒子於中腸組織的數量,利用抑制性扣減雜合法(suppression subtractive hybridization, SSH) 找出東方蜂微粒子的特有基因 sr22 , sr28, sr71和sr85 (大小分別: 798, 414, 1128 and 1023 nts),並利用這些基因設計引子對進行 DNA 的偵測以及基因表現之時序變化。根據實驗結果, sr22 被選為做為後續研究基因,sr22 DNA 可在感染後第 3 天被偵測出,而 RNA 在感染後 84 小時,即可偵測出。這項結果可推測 sr22 基因為一個晚期基因 (latter gene),且根據 NCBI 資料庫的比對,該基因可能與孢壁蛋白的組成有關。利用 qPCR 計算出 sr22 基因於東方蜂微粒子基因體中的拷貝數,其結果為 1.09。這項結果可用以了解感染組織中確切的微粒子數量以及微粒子感染程度之關聯。除此之外, sr22 同時可在西方蜂微粒子與家蠶微粒子基因體中被偵測出,顯示出該基因在這 Nosema 屬中具有高保守性。zh_TW
dc.description.abstractColony Collapse Disorder (CCD) is a syndrome described as a mass loss of foraging workers in the colonies of western honey bee (Apis mellifera). This syndrome impacts not only on the honeybee products and also the pollination. However causing factor is still undetermined. The microsporidiun Nosema ceranae,is being suggested that it plays an important role on CCD. This parasite is originally found from Asian honey bee, A. ceranae, but now it is a prevalent parasite and worldwide distributed in A. mellifera colonies. The midgut of honey bee is the main target organ. Traditionally, the diagnosis of honey beemicrosporiosis is based on spore examination in the midgut by light microscopy. In our experimental infection of N. ceranae to 3-day-old workers, the spores could be detected initially at 9-day post infection by light microscopy. In order to develop an early diagnosis method and to detect the number of parasite individuals in the examined midguts, four microsporidian specificgenes, sr22 , sr28, sr71 and sr85 were cloned and identified by SSH (suppression subtractive hybridization), the size of these genes were 798, 414, 1128 and 1023 nts, respectively. The sr22 was selected for this study, this gene is a hypothetical protein of N. ceranae. The sr22 DNA could be detected at 3-day post infection by PCR, while the sr22 expression was detected initially at 84-hour post infection by RT-PCR. The latter showed that this gene is a very latter gene which is suggested that this gene may involve the construction of spore wall. The former showed that this gene could be a molecular marker for early diagnosis of microsporidian infection. Due to the complication of microsporidian life cycle, the copy number of each N. ceranae individual, about 1.09, was also estimated by qPCR. This result will be used to reveal the number of parasite individuals in the infection sample and also implied the infection degree of this parasite. Furthermore, sr22 could also be detected in the genomes of N. apis and N. bombycis, indicating that this gene is highly conserved at least in the genus of Nosema.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:22:32Z (GMT). No. of bitstreams: 1
ntu-102-R00632010-1.pdf: 1757222 bytes, checksum: 179ca6cc04799a2842e08610440c045e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員會審定書……………………………………………………………………………………………………….i
誌謝……………………………………………………………………………………………………………………………..ii
中文摘要…………………………………………………………………………………………………………………….iii
英文摘要…………………………………………………………………………………………………………………….Iv
第一章、前言……………………………………………………….………………………………………………………1
第二章、前人研究…………….…………………………………………………………………………………………3
2.1 西方蜂………….………………………………………………………………………………………………..3
2.2 微孢子外部形態與構造………………………………………………………………………………4
2.3 東方蜂微粒子形態構造及生活史…………………………………………………………………6
第三章、材料與方法……………………………………………………………………………………………………8
3.1蜜蜂管理……………………………………………………………………………………………………….8
3.2東方蜂微粒子純化………….…………………………………………………………………………….8
3.3 蜜蜂感染……………………………………………………………………………………………………….9
3.4 感染中腸組織之微粒子檢測………………………………………………………………………..9
3.4.1 蜜蜂中腸組織 DNA 萃取………………………………………………………………….….9
3.4.2 聚合酶連鎖反應…………………………………………………………………………………10
3.5 引子對偵測效率測試..…………………………………………………………………………….…11
3.5.1 東方蜂微粒子基因體 DNA (genomic DNA) 萃取………………………………11
3.5.2聚合酶連鎖反應…………………………………………………………………………………11
3.6 東方蜂微粒子基因於三種微粒子之 PCR 檢測……………………………………….12
3.6.1 微粒子 DNA 之萃取…………………………………………………………………………...12
3.6.1.1 組織和基因體DNA 純化套組 (Tissue & Cell Genomic DNA Purification Kit)……………………………………………………………………….…….……….12
3.6.1.2 EDNA HiSpEx……………………………………………………………………………..12
3.6.2聚合酶連鎖反應……………………………………………………………………………………13
3.7 sr22 基因拷貝數計算………………………………………………………………………………….13
3.7.1 sr22 質體拷貝數計算…………………………………………………………………………..13
3.7.2 東方蜂微粒子基因體拷貝數計算……………………………………………………….14
3.7.3 sr22 基因於基因體中之拷貝數計算…………………………………………………14
3.7.4 運用拷貝數及標準曲線進行東方蜂微粒子之定量…………………………………14
3.8 東方蜂微粒子特有基因表現時序檢測………………………………………………………15
3.8.1 蜜蜂中腸 RNA 萃取………………………………………………………………………….15
3.8.2 cDNA 之製備……………………………………………………………………………………….15
3.8.3反轉錄聚合酶連鎖反應……………………………………………………………………..15
第四張、結果.………………………………………………………………………………………………………….17
4.1 東方蜂微粒子檢測與鏡檢結果…………………………………………………………………..17
4.2 引子對偵測效率測試………………………………………………………………………………….18
4.3 東方蜂微粒子特有基因於不同微粒子物種上之檢測………………………………..18
4.4 sr22基因於東方蜂微粒子之拷貝數…………………………………………………………….19
4.5 東方蜂微粒子之特有基因表現時序檢測……………………………………………………20
第五章、討論……….……………………………………………………………………………………………………22
第六章、結論….………………………………………………………………………………………………………..26
第七章、參考文獻………………………..……………………………………….……………………………..….27
附表…………………………………………………………………………………………………………………………..36
附圖………………………………………………………..…………………………………………………………………39
附錄一、……………………………………………………………………………………………………………………51
附錄二、……………………………………………………………………………………………………………………52
附錄三、……………………………………………………………………………………………………………………53
附錄四、…………………………………………………………………………………………………………………….54
附錄五、……………………………………………………………………………………………………………………..55
表次
表一、本研究所使用之引子對………………………………………………………………………………..36
表二、sr22基因於其他微粒子物種間序列相同度比較………………………………………….37
表三、qPCR 結果之數據表………………………………………………………………………………………38
圖次
圖一、東方蜂微粒子之生活史….…………………………………………………………………...……………7
圖二、東方蜂微粒子經由光學照片顯示之孢子……………………………………....................39
圖三、東方蜂微粒子孢子鏡檢後之計數結果…………………………………………………………..40
圖四、實驗組 (感染組) 蜜蜂中腸細胞 DNA 之微粒子檢測………………………………..41
圖五、控制組蜜蜂中腸細胞 DNA 之微粒子檢測…………………………………..................42
圖六、SSUrDNA 引子對與 RT-SR22 引子對偵測效率比較………………………………….43
圖七、東方蜂微粒子特有基因於三種微粒子之 PCR 檢測結果……………………44
圖八、東方蜂微粒子、蜜蜂微粒子和家蠶微粒子 sr22 基因之部分序列排列圖…….45
圖九、sr22 質體 DNA 之 qPCR 標準曲線與東方蜂微粒子 genomic DNA 之 qPCR 曲線………………………………………………………………………………………………………46
圖十、比較中腸內之東方蜂微粒子孢子數與拷貝數………………………………47
圖十一、東方蜂微粒子特有基因於感染中腸組織樣本感染後第零天至三十天之基因表現時序變化………………………………………………………………………………………………48
圖十二、東方蜂微粒子特有基因於感染中腸組織樣本感染後第三天至第七天之基因表現時序變化………………………………………………………………………………………………49
圖十三、東方蜂微粒子特有基因 sr22 於感染中腸組織樣本之表現時序變化…....50
dc.language.isozh-TW
dc.subject東方蜂微粒子zh_TW
dc.subjectsr22zh_TW
dc.subject拷貝數zh_TW
dc.subject特有基因zh_TW
dc.subjectNosema ceranaeen
dc.subjectspecific geneen
dc.subjectsr22en
dc.subjectcopy numberen
dc.title微粒子特有基因 sr22 應用於蜜蜂微粒子病之診斷zh_TW
dc.titleThe microsporidian specific gene, sr22, used for diagnosis of honey bee microsporidiosisen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor王重雄
dc.contributor.oralexamcommittee許惠貞,杜武俊,陳裕文
dc.subject.keyword東方蜂微粒子,特有基因,sr22,拷貝數,zh_TW
dc.subject.keywordNosema ceranae,specific gene,sr22,copy number,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved