Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorShu-Ting Yehen
dc.contributor.author葉書廷zh_TW
dc.date.accessioned2021-06-16T10:22:14Z-
dc.date.available2014-08-25
dc.date.copyright2013-08-25
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[1] E. F. Schubert, Light-Emitting-Diodes. Cambridge, 2007.
[2] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures. Cambridege, 2007.
[3] H.-W. Yang, “Numerical Analysis of Optoelectronic Properties of InGaN/GaN Multiple Quantum Well,” Master’s thesis, National Taiwan University, 2008.
[4] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Ya-maguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al, In, Ga) N alloy semiconductors,” Nature Materials, vol. 5, no. 10, pp. 810–816, OCT 2006.
[5] J. S. Speck, “Progress in the Growth, Characterization and Device Performance for Nonpolar and Semipolar GaN-based Materials,” in CLEO, Baltimore, U.S., MAY 31-JUN 5 2009.
[6] H. H. Huang and Y. R. Wu, “Light emission polarization properties of semipolar InGaN/GaN quantum well,” J. Appl. Phys., vol. 107, no. 5, p. 053112, Mar. 2010.
[6] H. H. Huang and Y. R. Wu, 'Light emission polarization properties of semipolar InGaN/GaN quantum well,' J. Appl. Phys., vol. 107, no. 5, p. 053112, 2010.
[7] I. L. Koslow, M. T. Hardy, P. S. Hsu, P.-Y. Dang, F. Wu, A. Romanov, Y.-R. Wu,E. C. Young, S. Nakamura, J. S. Speck, and S. P. DenBaars, 'Performance and polarization eff ects in (11 22) long wavelength light emitting diodes grown on stress
relaxed InGaN bu er layers,' Appl. Phys. Lett., vol. 101, no. 12, SEP 2012.
[8] K.-L. Chi, S.-T. Yeh, Y.-H. Yeh, K.-Y. Lin, J.-W. Shi, Y.-R. Wu, and J.-K. Sheu,'GaN-Based Dual Color LEDs with P-Type Insertion Layer for Balancing Two-Color Intensities,' in CLEO 2013 June, San Jose, U.S., 2013.
[9] K.-L. Chi, S.-T. Yeh, Y.-H. Yeh, K.-Y. Lin, J.-W. Shi, Y.-R. Wu, and J.-K. Sheu, 'GaN-Based Dual Color Light-Emitting-Diodes with P-Type Insertion Layer for Controlling the Ratio of Two-Color Intensities,' IEEE Transactions on Electron Devices, 2013.
[10] J. R. Chen, T. S. Ko, P. Y. Su, T. C. Lu, H. C. Kuo, Y. K. Kuo, and S. C.Wang, 'Numerical Study on Optimization of Active Layer Structures for GaN/AlGaN Multiple-Quantum-Well Laser Diodes,' IEEE/OSA Journal of Lightwave Technology, vol. 26, no. 17-20, pp. 3155-3165, 2008.
[11] A. Avramescu, T. Lermer, J. Muller, S. Tautz, D. Queren, S. Lutgen, and U. Strauss, 'InGaN laser diodes with 50 mW output power emitting at 515 nm,' Appl. Phys. Lett., vol. 95, no. 7, p. 071103, 2009.
[12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, 'Super-bright Green InGaN Single-Quantum-Well-Structure Light-Emitting-Diodes,' Jpn. J. Appl. Phys. Part 2-Letters, vol. 34, no. 10B, pp. L1332-L1335, 1995.
[13] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, 'Ultra-high eff ciency white light emitting diodes,' Jpn. J. Appl. Phys. Part 2-Letters &
Express Letters, vol. 45, no. 37-41, pp. L1084-L1086, 2006.
[14] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, 'InGaN/GaN multiple quantum well solar cells with long operating wavelengths,' Appl. Phys. Lett., vol. 94, no. 6,
p. 063505, 2009.
[15] H. Sato, A. Tyagi, H. Zhong, N. Fellows, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'High power and high eff iciency green light emitting diode on free-standing semipolar (11 22) bulk GaN substrate,' Physica Status Solidi-Rapid Research Letters, vol. 1, no. 4, pp. 162-164, 2007.
[16] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, 'Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced e ciency droop,' Appl. Phys. Lett., vol. 93, no. 4, p. 041102, 2008.
[17] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, 'Origin of effi ciency droop in GaN-based light-emitting diodes,' Appl. Phys. Lett., vol. 91, no. 18, OCT 2007.
[18] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, 'E ect of dislocation density on effi ciency droop in GaInN/GaN light-emitting diodes,' Appl. Phys. Lett., vol. 91, no. 23, DEC 2007.
[19] Y.-L. Li, R. Huang, and Y.-H. Lai, 'Effi ciency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,' Appl. Phys. Lett., vol. 91, no. 18, OCT 2007.
[20] T. Takeuchi, H. Amano, and I. Akasaki, 'Theoretical study of orientation dependence of piezoelectric eff ects in wurtzite strained GaInN/GaN heterostructures and quantum wells,' Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, vol. 39, no. 2A, pp. 413{416, 2000.
[21] H.-H. Huang and Y.-R. Wu, 'Study of polarization properties of light emitted from a-plane InGaN/GaN quantum well-based light emitting diodes,' J. Appl. Phys., vol.
106, no. 2, p. 023106, 2009.
[22] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, 'Electronic band structure of wurtzite GaN under biaxial strain in the m-plane investigated with photoreflectance spectroscopy,' Phys. Rev. B, vol. 65, no. 7, p. 075202, 2002.
[23] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, 'Nitride semiconductors free of electrostatic elds for
e cient white light-emitting diodes,' Nature, vol. 406, no. 6798, pp. 865-868, 2000.
[24] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, 'Structural characterization of nonpolar (11 20) a-plane GaN thin lms grown on (1 102) r-plane sapphire,' Appl. Phys. Lett., vol. 81, no. 3, pp. 469-471, 2002.
[25] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, 'Threading dislocation reduction via laterally overgrown nonpolar (11 20) a-plane GaN,' Appl. Phys. Lett., vol. 81, no. 7, pp. 1201{1203, 2002.
[26] B. A. Haskell, F. Wu, S. Matsuda, M. D. Craven, P. T. Fini, S. P. DenBaars, J. S. Speck, and S. Nakamura, 'Structural and morphological characteristics of planar
(11 20) a-plane gallium nitride grown by hydride vapor phase epitaxy,' Appl. Phys. Lett., vol. 83, no. 8, pp. 1554{1556, 2003.
[27] A. Chakraborty, K. C. Kim, F. Wu, J. S. Speck, S. P. DenBaars, and U. K. Mishra, 'Defect reduction in nonpolar a-plane GaN lms using in situ SiNx nanomask,' Appl. Phys. Lett., vol. 89, no. 4, p. 041903, 2006.
[28] F. Wu, M. D. Craven, S. H. Lim, and J. S. Speck, 'Polarity determination of a-plane GaN on r-plane sapphire and its e ects on lateral overgrowth and heteroepitaxy,' J.
Appl. Phys., vol. 94, no. 2, pp. 942-947, 2003.
[29] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, 'Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak,' Appl. Phys. Lett., vol. 85, no. 22, pp. 5143-5145, 2004.
[30] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura, and U. K. Mishra, 'Demonstration of nonpolar m-plane InGaN/GaN light-emitting
diodes on free-standing m-plane GaN substrates,' Jpn. J. Appl. Phys., Part 2, vol. 44, no. 1-7, pp. L173-L175, 2005.
[31] A. Chakraborty, T. J. Baker, B. A. Haskell, F. Wu, J. S. Speck, S. P. Denbaars, S. Nakamura, and U. K. Mishra, 'Milliwatt power blue InGaN/GaN light-emitting
diodes on semipolar GaN templates,' Jpn. J. Appl. Phys., Part 2, vol. 44, no. 28-32, pp. L945-L947, 2005.
[32] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskell, F.Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, 'Demonstration of a semipolar (10 1 3)
InGaN/GaN green light emitting diode,' Appl. Phys. Lett., vol. 87, no. 23, p. 231110, 2005.
[33] K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, and I. Fujimura, 'High-quality nonpolar m-plane GaN substrates grown by HVPE,' Physica Status Solidi A-Application and Materials Science, vol. 205, no. 5, pp. 1056-1059, MAY 2008, 7th International Conference on Nitride Semiconductors (ICNS-7), Las Vegas, NV, SEP 16-21, 2007.
[34] K. C. Kim, M. C. Schmidt, H. Sato, F.Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S. P. DenBaars, and J. S. Speck, 'Study of nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition,' Appl. Phys. Lett., vol. 91, 2007.
[35] H. Sato, R. B. Chung, H. Hirasawa, N. Fellows, H. Masui, F. Wu, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'Optical properties of yellow light-emitting diodes grown on semipolar (11 22) bulk GaN substrates,' Appl. Phys. Lett., vol. 92, no. 22, p. 221110, 2008.
[36] K. Kojima, M. Funato, Y. Kawakami, S. Masui, S. Nagahama, and T. Mukai, 'Stimulated emission at 474 nm from an InGaN laser diode structure grown on a (11 22)
GaN substrate,' Appl. Phys. Lett., vol. 91, no. 25, p. 251107, 2007.
[37] M. Ueda, M. Funato, K. Kojima, Y. Kawakami, Y. Narukawa, and T. Mukai, 'Polarization switching phenomena in semipolar InxGa1-xN/GaN quantum well active layers,' Phys. Rev. B, vol. 78, no. 23, p. 233303, 2008.
[38] B. Neubert, P. Bruckner, F. Habel, F. Scholz, T. Riemann, J. Christen, M. Beer, and J. Zweck, 'GaInN quantum wells grown on facets of selectively grown GaN stripes,'
Appl. Phys. Lett., vol. 87, no. 18, p. 182111, 2005.
[39] M. Feneberg, F. Lipski, R. Sauer, K. Thonke, T. Wunderer, B. Neubert, P. Bruckner, and F. Scholz, 'Piezoelectric fi elds in GaInN/GaN quantum wells on di erent crystal facets,' Appl. Phys. Lett., vol. 89, no. 24, p. 242112, 2006.
[40] T. Wunderer, P. Bruckner, B. Neubert, F. Scholz, M. Feneberg, F. Lipski, M. Schirra,
and K. Thonke, 'Bright semipolar GaInN/GaN blue light emitting diode on side facets of selectively grown GaN stripes,' Appl. Phys. Lett., vol. 89, no. 4, p. 041121, 2006.
[41] A. Tyagi, H. Zhong, N. N. Fellows, M. Iza, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'High Brightness Violet InGaN/GaN Light Emitting Diodes on Semipolar (10 1 1) Bulk GaN Substrates,' Jpn. J. Appl. Phys., vol. 46, no. 7, pp. L129-L131,2007.
[42] H. Zhong, A. Tyagi, N. N. Fellows, F. Wu, R. B. Chung, M. Saito, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'High power and high efficiency blue light
emitting diode on freestanding semipolar (10 1 1) bulk GaN substrate,' Appl. Phys. Lett., vol. 90, no. 23, p. 233504, 2007.
[43] T. J. Baker, B. A. Haskell, F. Wu, J. S. Speck, and S. Nakamura, “Characterization of planar semipolar gallium nitride films on sapphire substrates,” Jpn. J. Appl. Phys., Part 2, vol. 45, no. 4-7, pp. L154–L157, 2006.
[44] P. S. Hsu, E. C. Young, A. E. Romanov, K. Fujito, S. P. DenBaars, S. Nakamura, and J. S. Speck, 'Misfi t dislocation formation via pre-existing threading dislocation glide in (11 22) semipolar heteroepitaxy,' Appl. Phys. Lett., vol. 99, AUG 2011.
[45] T. Kyono, Y. Yoshizumi, Y. Enya, M. Adachi, S. Tokuyama, M. Ueno, K. Katayama,
and T. Nakamura, 'Optical Polarization Characteristics of InGaN Quantum Wells for Green Laser Diodes on Semi-Polar (20 21) GaN Substrates,' Applied Physics Express, vol. 3, no. 1, 2010.
[46] S. Yamamoto, Y. Zhao, C.-C. Pan, R. B. Chung, K. Fujito, J. Sonoda, S. P. DenBaars, and S. Nakamura, 'High-E ciency Single-Quantum-Well Green and Yellow-Green Light-Emitting Diodes on Semipolar (20 21) GaN Substrates,' Applied PhysicsExpress, vol. 3, no. 12, 2010.
[47] Y. Enya, Y. Yoshizumi, T. Kyono, K. Akita, M. Ueno, M. Adachi, T. Sumitomo, S. Tokuyama, T. Ikegami, K. Katayama, and T. Nakamura, '531 nm Green Lasing of InGaN Based Laser Diodes on Semi-Polar (20 21) Free-Standing GaN Substrates,'
Applied Physics Express, vol. 2, AUG 2009.
[48] Y.-D. Lin, S. Yamamoto, C.-Y. Huang, C.-L. Hsiung, F. Wu, K. Fujito, H. Ohta, J. S. Speck, S. P. DenBaars, and S. Nakamura, 'High Quality InGaN/AlGaN Multiple Quantum Wells for Semipolar InGaN Green Laser Diodes,' Applied Physics Express, vol. 3, AUG 2010.
[49] M. Adachi, Y. Yoshizumi, Y. Enya, T. Kyono, T. Sumitomo, S. Tokuyama, S. Takagi, K. Sumiyoshi, N. Saga, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura, 'Low
Threshold Current Density InGaN Based 520-530nm Green Laser Diodes on Semi-Polar (20- 21) Free-Standing GaN Substrates,' Applied Physics Express, vol. 3, no. 12, 2010.
[50] Y. Yoshizumi, M. Adachi, Y. Enya, T. Kyono, S. Tokuyama, T. Sumitomo, K. Akita, T. Ikegami, M. Ueno, K. Katayama, and T. Nakamura, “Continuous-Wave Operation of 520 nm Green InGaN-Based Laser Diodes on Semi-Polar (20‾21) GaN Substrates,” Applied Physics Express, vol. 2, SEP 2009.
[51] A. Tyagi, R. M. Farrell, K. M. Kelchner, C.-Y. Huang, P. S. Hsu, D. A. Haeger, M. T. Hardy, C. Holder, K. Fujito, D. A. Cohen, H. Ohta, J. S. Speck, S. P. DenBaars, and
S. Nakamura, “AlGaN-Cladding Free Green Semipolar GaN Based Laser Diode with a Lasing Wavelength of 506.4 nm,” Applied Physics Express, vol. 3, no. 1, 2010.
[52] D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Semipolar (20‾2‾1) In- GaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting,” Journal of Display Technology, vol. 9, pp. 190–198, APR 2013.
[53] A. E. Romanov, E. C. Young, F. Wu, A. Tyagi, C. S. Gallinat, S. Nakamura, S. P. DenBaars, and J. S. Speck, “Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy,” J. Appl. Phys., vol. 109, MAY 2011.
[54] E. C. Young, A. E. Romanov, C. S. Gallinat, A. Hirai, G. E. Beltz, and J. S. Speck, “Anisotropy of tensile stresses and cracking in nonbasal plane AlxGa1−xN/GaN het- erostructures,” Appl. Phys. Lett., vol. 96, JAN 2010.
[55] Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, “Role of strain in polarization switching in semipolar InGaN/GaN quantum wells,” Appl. Phys. Lett., vol. 97, NOV 2010.
[56] I. Koslow, M. T. Hardy, P. S. Hsu, E. C. Young, S. Nakamura, J. S. Speck, and S. P. Denbaars, “Strain relaxation in semipolar nitrides,” in optoelectronic device application Oral Presentation, 53rd Electronic Materials Conf. (Santa Barbara, CA), 2011.
[57] S. H. Park, D. Ahn, and S. L. Chuang, “Electronic and optical properties of a- and m- plane wurtzite InGaN-GaN quantum wells,” IEEE Journal of Quantum Electronics, vol. 43, no. 11-12, pp. 1175–1182, 2007.
[58] H. Masui, H. Yamada, K. Iso, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Non- polar-oriented InGaN light-emitting diodes for liquid-crystal-display backlighting,” J. Soc. Inf. Disp., vol. 16, pp. 571–578, 2008.
[59] C. Koelper, M. Sabathil, M. Mandl, M. Strassburg, and B. Witzigmann, “All-InGaN Phosphorless White Light Emitting Diodes: An Efficiency Estimation,” Journal of Lightwave Technology, vol. 30, pp. 2853–2862, SEP 2012.
[60] Y. Li, T. Gessmann, E. Schubert, and J. Sheu, “Carrier dynamics in nitride-based light-emitting p-n junction diodes with two active regions emitting at different wave- lengths,” J. Appl. Phys., vol. 94, pp. 2167–2172, AUG 2003.
[61] S. Shei, J. Sheu, C. Tsai, W. Lai, M. Lee, and C. Kuo, “Emission mechanism of mixed- color InGaN/GaN multi-quantum-well light-emitting diodes,” Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 2463– 2466, APR 2006.
[62] C.-F. Huang, C.-F. Lu, T.-Y. Tang, J.-J. Huang, and C. C. Yang, “Phosphor-free white-light light-emitting diode of weakly carrier-density-dependent spectrum with prestrained growth of InGaN/GaN quantum wells,” Appl. Phys. Lett., vol. 90, APR 2007.
[63] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, “Carrier distribution in (0001) InGaN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 92, FEB 2008.
[64] S.-H. Guol, J.-H. Wang, Y.-H. Wu, W. Lin, Y.-J. Yang, C.-K. Sun, C.-L. Pan, and J.-W. Shi, “Bipolar Cascade Superluminescent Diodes at the 1.04μm Wavelength Regime,” IEEE Photonics Technology Letters, vol. 21, pp. 328–330, MAR 2009.
[65] X. Guo, G. D. Shen, B. L. Guan, X. L. Gu, D. Wu, and Y. B. Li, “Cascade single-chip phosphor-free white light-emitting diodes,” Appl. Phys. Lett., vol. 92, JAN 2008.
[66] J. W. Shi, T. J. Hung, Y. Y. Chen, Y. S. Wu, W. Lin, and Y.-J. Yang, “InP-based transverse junction light-emitting diodes for white-light generation at infrared wavelengths,” IEEE Photonics Technology Letters, vol. 18, pp. 2053–2055, SEP-OCT 2006.
[67] J. W. Shi, C. C. Chen, C. K. Wang, C. S. Lin, J. K. Shen, W. C. Lai, C. H. Kuo, C. J. Tun, T. H. Yang, F.-C. Tsao, and J. I. Chyi, “Phosphor-free GaN-based trans- verse junction white-light light-emitting diodes with regrown n-type regions,” IEEE Photonics Technology Letters, vol. 20, pp. 449–451, MAR-APR 2008.
[68] J.-W. Shi, S.-H. Guol, C. S. Lin, J.-K. Sheu, K.-H. Chang, W. C. Lai, C. H. Kuo, C. J. Tun, and J.-I. Chyi, “The Structure of GaN-Based Transverse Junction Blue LED Array for Uniform Distribution of Injected Current/Carriers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, pp. 1292–1297, JUL-AUG 2009.
[69] Y. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” J. Appl. Phys., vol. 94, pp. 5826–5831, NOV 2003.
[70] C.-K. Li and Y.-R. Wu, “Study on the Current Spreading Effect and Light Extraction Enhancement of Vertical GaN/InGaN LEDs,” IEEE Transactions on Electron Devices, vol. 59, pp. 400–407, FEB 2012.
[71] A. E. Romanov, T. J. Baker, S. Nakamura, J. S. Speck, and E. J. U. Grp, “Strain- induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, no. 2, p. 023522, 2006.
[72] S. H. Park and S. L. Chuang, “Comparison of zinc-blende and wurtzite GaN semicon- ductors with spontaneous polarization and piezoelectric field effects,” J. Appl. Phys., vol. 87, pp. 353–364, JAN 2000.
[73] K. Kim, W. R. L. Lambrecht, and B. Segall, “Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN,” Phys. Rev. B, vol. 53, pp. 16310– 16326, JUN 1996.
[74] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semicon- ductors,” J. Appl. Phys., vol. 94, no. 6, pp. 3675–3696, 2003.
[75] M. Kumagai, S. Chuang, and H. Ando, “Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors,” Phys. Rev. B, vol. 57, pp. 15303– 15314, JUN 1998.
[76] H. Jiang, Strain induced physical phenomena in InGaAs/GaAs And InGaN/GaN heterostructures. PhD thesis, University of Michigan, 1999.
[77] J. Bhattacharyya, S. Ghosh, and H. T. Grahn, “Optical polarization properties of interband transitions in strained group-III-nitride alloy films on GaN substrates with nonpolar orientation,” Appl. Phys. Lett., vol. 93, no. 5, p. 051913, 2008.
[78] Y.-R. Wu, R. Shivaraman, K.-C. Wang, and J. S. Speck, “Analyzing the physical properties of InGaN multiple quantum well light emitting diodes from nano scale structure,” Appl. Phys. Lett., vol. 101, AUG 2012.
[79] D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, “Carrier localization mechanisms in InxGa1−xN/GaN quantum wells,” Phys. Rev. B, vol. 83, MAR 2011.
[80] Y.-L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “Effect of quantum well cap layer thickness on the microstructure and performance of In- GaN/GaN solar cells,” Appl. Phys. Lett., vol. 100, APR 2012.
[81] Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Appl. Phys. Lett., vol. 95, SEP 2009.
[82] H. Masui, H. Asamizu, A. Tyagi, N. F. DeMille, S. Nakamura, and S. P. DenBaars, “Correlation between Optical Polarization and Luminescence Morphology of (11‾22)-Oriented InGaN/GaN Quantum-Well Structures,” Applied Physics Express, vol. 2,
JUL 2009.
[83] M. L. Reed, E. D. Readinger, H. Shen, M. Wraback, A. Syrkin, A. Usikov, O. V. Ko- valenkov, and V. A. Dmitriev, “n-InGaN/p-GaN single heterostructure light emitting diode with p-side down,” Appl. Phys. Lett., vol. 93, SEP 2008.
[84] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes,” Appl. Phys. Lett., vol. 98, APR 18 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60578-
dc.description.abstract在本篇論文中,我們有系統的研究了以氮化鎵為材料的發光二極體在兩個方面,分別是半極性氮化銦鎵/氮化鎵量子井在應力控制下之發光特性以及雙色發光二極體之載子傳輸之研究。
論文的第一部份我們探討了(11$ ar{2}$2)和(20$ ar{2}$1)長晶方向之半極性氮化銦鎵/氮化鎵單一量子井發光二極體的光學非等向性,並深入討論不同濃度的銦以及沿著'c'軸投影方向上不同程度的應力釋放所造成的影響。
我們利用我們實驗室發展的一維模型去求解漂移擴散、帕松以及 6$ imes$6 $k cdot p$ 薛丁格方程來分析能帶結構圖和發光特性。
研究顯示對於(11$ ar{2}$2)長晶方向的發光二極體而言,我們可以發現一個隨著銦濃度增加而發生發光極化方向改變之現象。
對於(20$ ar{2}$1)長晶方向的發光二極體而言,隨著銦濃度的增加加上一定程度上的應力釋放,其極化率可以被提升至超過90$\%$,這對於雷射及液晶顯示器背光模組的應用上有著極大的潛力。
論文的第二部份我們探討了一種創新結構的雙色發光二極體之載子傳輸研究,這種創新的結構是在兩組不同波長之多層量子井之間插入了一層摻雜電洞之氮化鎵。
這裡我們利用了二維模型去求解漂移擴散以及帕松方程,並額外加上一個考慮銦濃度波動之外掛函數來使我們的模擬結果更加準確。
結果顯示適度的選擇在摻雜電洞之氮化鎵插入層的摻雜濃度和厚度,即使在低電流密度下,我們仍然可以有效的優化兩種波長的輸出光強度之間的比例。
zh_TW
dc.description.abstractIn this thesis, we systematically study the GaN-based LEDs in two aspects: the emission characteristics of semipolar InGaN/GaN quantum well with strain manipulation and the carrier transport of dual color light-emitting-diodes.
The first part of the thesis investigates the optical anisotropic behaviour of the (11$ ar{2}$2) and (20$ ar{2}$1) semipolar InGaN/GaN single quantum well LEDs.
The influence of different indium compositions of the quantum well, and different degrees of strain relaxation along the projection of $c$-axis are discussed in detail.
Our developed one dimensional model is used to solve drift-diffusion, Poisson equations, and 6$ imes$6 $kcdot p$ Schr'{o}dinger equations to investigate the band structures and emission characteristics.
The study shows that for the (11$ ar{2}$2)-plane, there exists a switching of light emission polarization directions with the increase of indium composition.
While for the (20$ ar{2}$1)-plane, the polarization ratio $
ho_{y'x'}$ can be achieved over 90$\%$ with a high indium composition and a large degree of strain relaxation, which is promising for laser diodes and LCD backlight modules applications.
The second part of the thesis will investigate the carrier transport of a novel GaN-based dual color light-emitting diodes (LEDs) with an additional p-GaN layer inserted between the two-color wavelength MQWs.
We apply our 2D Poisson, drift-diffusion solver with an extra plug-in function considering the indium fluctuation to make the simulation result more precise.
The result shows that by properly selecting the doping density and the thickness of the p-GaN insertion layer, we can effectively optimize the ratio of output light intensities between the dual color wavelength even under a low bias current density.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:22:14Z (GMT). No. of bitstreams: 1
ntu-102-R00941081-1.pdf: 6753572 bytes, checksum: 3d5976821ad2532b6db472f9150e5c98 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
1.1 III-V Nitride Compound Semiconductors . . . . . . . . 1
1.2 Characteristics of the InGaN/GaN QuantumWell Structures
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Strain Effect . . . . . . . . . . . . . . . . . . 4
1.2.2 Spontaneous Polarization and Strain-induced Piezoelectric Polarization Effects . . . . . . . . . . . 7
1.2.3 Quantum Conned-Stark Effect . . . . . . . . . . . 9
1.3 Brief Introduction of Nonpolar and Semipolar Plane
Nitride-Based LEDs . . . . . . . . . . . . . . . . . . . 10
1.3.1 Strain Relaxation Mechanism in Semipolar Films . . 15
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 The Semipolar Plane LEDs . . . . . . . . . . . 17
1.4.2 The Dual Color LEDs . . . . . . . . . . . . . . 19
2 Formalism . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Simulation Model for the Semipolar Plane LEDs . . . . 21
2.1.1 The Effect of Crystallographic Orientation . . . 23
2.1.2 Drift-Diffusion Charge Control Model . . . . . . 31
2.1.3 6x6 kp Schr odinger Method . . . . . . . . . . 34
2.1.4 Optical Properties of InGaN/GaN Quantum Well . . . 38
2.2 Simulation Model for the Dual Color LEDs . . . . . . 41
3 Study of Light Emission Polarization Properties of Semipolar InGaN/GaN Quantum Wells Under Different Strain Conditions . . . . . . . . . . . . . 44
3.1 Result and Discussion . . . . . . . . . . . . . . . 48
3.1.1 Semipolar (11-22) InGaN/GaN Quantum Well . . . . 48
3.1.2 Semipolar (20-21) InGaN/GaN Quantum Well . . . . 55
3.1.3 Investigation on Simulation Results Using Different
Deformation Potentials . . . . . . . . . . 60
3.2 Summary . . . . . . . . . . . . . . . . . . . . . 64
4 Numerical Study on Optimization of a GaN-Based Dual Color
Light-Emitting Diode with P-Type Insertion Layer for Balancing Two-Color Intensities . . . . . . . . . . . . . 67
4.1 Result and Discussion . . . . . . . . . . . . . . . . 73
4.1.1 Eect of P-GaN Insertion Layer Doping Density . . . 73
4.1.2 Eect of P-GaN Insertion Layer Thickness . . . 83
4.1.3 Simulation Fitting to the Experimental Results 89
4.2 Summary . . . . . . . . . . . . . . . . . . . . . . 95
5 Conclusion . . . . . . . . . . . . . . . . . . . . . 96
Reference . . . . . . . . . . . . . . . . . . . . . . . 99
dc.language.isoen
dc.subject半極性zh_TW
dc.subject量子井zh_TW
dc.subjectk-p法zh_TW
dc.subject帕松方程zh_TW
dc.subject漂移擴散方程zh_TW
dc.subject發光二極體zh_TW
dc.subject極化率zh_TW
dc.subject雙色發光二極體zh_TW
dc.subject銦濃度波動zh_TW
dc.subject載子動力學zh_TW
dc.subject應力釋放zh_TW
dc.subject氮化鎵zh_TW
dc.subject氮化銦鎵zh_TW
dc.subjectdrift-diffusion equationen
dc.subjectGaNen
dc.subjectInGaNen
dc.subjectsemipolaren
dc.subjectquantum wellen
dc.subjectk-p methoden
dc.subjectPoisson equationen
dc.subjectlight-emitting-diodes (LEDs)en
dc.subjectstrain relaxationen
dc.subjectpolarization ratioen
dc.subjectdual color light-emitting-diodes (LEDs)en
dc.subjectindium fluctuationen
dc.subjectcarrier dynamicen
dc.title半極性氮化銦鎵/氮化鎵量子井在應力控制下之發光特性以及雙色發光二極體之載子傳輸研究zh_TW
dc.titleThe emission characteristics of semipolar InGaN/GaN quantum well with strain manipulation and the carrier transport study of dual color light-emitting-diodesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),陳奕君(I-Chun Cheng),黃建璋(JianJang Huang)
dc.subject.keyword發光二極體,氮化鎵,氮化銦鎵,半極性,量子井,k-p法,帕松方程,漂移擴散方程,應力釋放,極化率,雙色發光二極體,銦濃度波動,載子動力學,zh_TW
dc.subject.keywordlight-emitting-diodes (LEDs),GaN,InGaN,semipolar,quantum well,k-p method,Poisson equation,drift-diffusion equation,strain relaxation,polarization ratio,dual color light-emitting-diodes (LEDs),indium fluctuation,carrier dynamic,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved