請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60577完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Yi-Wen Tseng | en |
| dc.contributor.author | 曾怡文 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:22:12Z | - |
| dc.date.available | 2017-08-23 | |
| dc.date.copyright | 2013-08-23 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | Bibliography
[1] Almeida, V. R., C. A. Barrios, R. R. Panepucci, and M. Lipson, 'All-optical control of light on a silicon chip,' Nature, vol. 431, pp. 1081-1084, 2004. [2] Barnes, W. L., A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature, vol. 424, pp. 824-830, 2003. [3] Berenger, J. P., 'A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.' J. Comp. Phys., vol. 114, pp. 185-200, 1994. [4] Berini, P., 'Plasmon polariton modes guided by a metal fi lm of fi nite width,' Opt. Lett., vol. 24, pp. 1011-1013, 1999. [5] Berini, P., 'Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,' Phys. Rev. B, vol. 61, pp. 10484-10503, 2000. [6] Berini, P., 'Plasmon-polariton waves guided by thin lossy metal films of fi nite width: Bound modes of asymmetric structures,' Phys. Rev. B, vol. 63, 125417, 2001. [7] Berini, P., 'Figures of merit for surface plasmon waveguides,' Opt. Express, vol. 14, pp. 13030-13042, 2006. [8] Bierwirth, K., N. Schulz, and F. Arndt, 'Finite-di fference analysis of rectangular dielectric waveguide structures,' IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1104-1113, 1986. [9] Birks, T. A., D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, 'Dispersion compensation using single-material bers,' IEEE Photon. Tech. Lett., vol. 11, pp. 674-676, 1999. [10] Birks, T. A., J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fi ber,' Opt. Lett., vol. 22, pp. 961-963, 1997. [11] Bjarklev, A., J. Broeng, K. Dridi, and S. E. Barkou, 'Dispersion properties of photonic crystal fibres,' Opt. Commun., vol. 1, pp. 135-136, 1998. [12] Boardman, A. D., G. C. Aers, and R.Teshima, Retarded edge modes of a parabolic wedge,' Phys. Rev. B, vol. 24, pp. 5703-5712, 1981. [13] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [14] Boltasseva, A., and S. I. Bozhevolnyi, Directional Couplers Using Long-Range Surface Plasmon PolaritonWaveguides,' IEEE J. Sel. Top. Quantum Electron., vol. 12, pp. 1233-1241, 2006. [15] Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, 'Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,' Opt. Express, vol. 16, pp. 5252-5260, 2008. [16] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, 'Channel plasmon-polariton guiding by subwavelength metal grooves,' Phys. Rev. B, vol. 95, 046802, 2005. [17] Burke, J. J., G. I. Stegeman, and T. Tamir, 'Surface-polariton-like waves guided by thin, lossy metal lms,' Phys. Rev. B, vol. 33, pp. 5186-5201, 1986. [18] Burnett, D. S., Finite Element Analysis. AT& T Bell Laboratories, 1987. [19] Cavendish, J. C., D. A. Field, and W. H. Frey, 'An approach to automatic three-dimensional finite element mesh generation,' Int. J. Number. Meth. Eng., vol. 21, pp. 329-347, 1985. [20] Cendes, Z. J., and P. Silvster, 'Numerical solution of dielectric loaded waveguides: Finite-element analysis,' IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124-1131, 1970. [21] Charbonneau, R., P. Berini, E. Berolo, and E. Lisicka-Shrzek, 'Experimental observation of plasmon polariton waves supported by a thin metal fi lm of finite width,' Opt. Lett., vol. 25, pp. 844-846, 2000. [22] Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [23] Chiang, Y. C., Y. P. CHiou, and H. C. Chang, 'Improved full-vectorial finitedifference mode solver for optical waveguides with step-index profiles,' J. Light- wave Technol., vol. 20, pp. 1609-1618, 2002. [24] Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008. [25] Collin, R. E., Foundations for Microwave Engineering, 2nd edition. Wiley-IEEE Press, 2001. [26] Economou, E. N., 'Surface plasmons in thin films,' Phys. Rev., vol. 182, pp. 539-554, 1969. [27] Ferrando, A., E. Silvestre, J. J. Miret, and P. Andres, 'Nearly zero ultraflattened dispersion in photonic crystal fibers,' Opt. Lett., vol. 25, pp. 790-792, 2000. [28] Fujisawa, T., and Koshiba, M., 'Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides,' J. Lightwave Technol., vol. 20, pp. 1876-1884, 2002. [29] Furusawa, K., and A. N. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson., 'A cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,' Opt. Express, vol. 9, pp. 714-720, 2001. [30] Gander, M. J. et al., 'Experimental measurement of group velocity dispersion in photonic crystal fi ber,' Electron. Lett. vol.35, pp. 63-64, 1999. [31] Gramotnev, D. K., and D. F. P. Pile, 'Single-mode subwavelength waveguide with channel plasmon polaritons in triangular grooves on a metal surface,' Appl. Phys. Lett., vol. 85, pp. 6323-6325, 2004. [32] Gramotnev, D. K., and S. I. Bozhevolnyi, 'plasmonics beyond the di ffraction limit,' Nature Photon., vol. 4, pp. 83-91, 2010. [33] Grillot, F., L. Vivien, and E. Cassan, 'Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,' J. Lightwave Technol., vol. 24, pp. 891-896, 2006. [34] Hadley, G. R., and R. E. Smith, 'Full-vector waveguide modeling using an iterative finite-diff erence method with transparent boundary conditions,' J. Lightwave Technol., vol. 13, pp. 465-469, 1995. [35] Hansen, K. P., J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, and A. Petersson, 'Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 m,' OFC, pp. FA9-1-FA9-3, 2002. [36] Holmgaard, T., and S. I. J. Bozhevolnyi, 'Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,' Phy. Rev. B, vol. 75, 245405, 2007. [37] Holmgaard, T., J. Gosciniak, and S. I. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides,' Opt. Express, vol. 18, pp. 23009-23015, 2010. [38] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [39] Issa, N. A., and L. Poladian, 'Vector wave expansion method for leaky modes of microstructured optical fi bers,' J. Lightwave Technol., vol.21, pp. 1005-1012, 2003. [40] Jin, J., The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press, 2002. [41] Knight, J. C. et al., 'Large mode area photonic crystal fi ber,' Electron. Lett., vol. 34, pp. 1347-1348, 1998. [42] Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. S. J. Russell, 'Anomalous dispersion in photonic crystal fi ber,' IEEE Photon. Tech. Lett., vol. 12, pp. 807-809, 2000. [43] Knight, J. C., T. A. Birks, P. S. J. Russell, and D. M. Atkin, 'All-silica singlemode optical fiber with photonic crystal cladding,' Opt. Lett., vol. 21, pp. 1547-1549, 1996. [44] Koshiba, M., and Y. Tsuji, 'Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,' J. Lightwave Technol., vol. 18, pp. 737-743, 2000. [45] Krenn, J. R. et al., 'Non-di raction-limited light transport by gold nanowires,' Europhys Lett., vol. 60, pp. 663-669, 2002. [46] Kretschmann, E., and H. Raether, 'Radiative decay of non-radiative surface plasmons excited by light,' Z. Naturforschung, vol. 23A, pp. 2135-2136, 1968. [47] Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Flidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, 'Surface plasmon propagation in microscale metal stripes,' Appl. Phys. Lett., vol. 79, pp. 51-53, 2001. [48] Lai, C. H., and H. C. Chang, 'Eff ect of perfectly matched layer reflection coeffi cient on modal analysis of leaky waveguide modes,' Opt. Express, vol. 19, pp. 562-569, 2011. [49] Lee, J.-F., D.-K. Sun, and Z. J. Cendes, 'Full-wave analysis of dielectric waveguides using tangential vector fi nite elements,' IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991. [50] Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [51] Lin, J. J., Analysis of Plasmonic Waveguides with Right-Angled Corners and Edges Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M.S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, July 2009. [52] Liu, L., Z. Han, and S. He, 'Novel surface plasmon waveguide for high integration,' Opt. Express, vol. 13, pp. 6645-6650, 2005. [53] L usse, P., P. Stuwe, and J. Sch ule, 'Analysis of vectorial mode Fi elds in optical waveguides by a new fi nite di fference method,' J. Lightwave Technol, vol. 12, pp. 487-493, 1994. [54]Maier, S. A., and H. A.Atwater, 'Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,' J. Appl. Phys., vol. 98, 011101, 2005. [55] Maier, S. A. et al., 'Local detection of electromagnetic energy transport below the di ffraction limit in metal nanoparticle plasmon waveguides,' Nature Mater., vol. 2, pp. 229-232, 2003. [56] Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin: Springer, 2007. [57] Mogilevtsev, D., T. A. Birks, and P. St. J. Russell, 'Group-velocity dispersion in photonic crystal fi bers,' Opt. Lett., vol. 23, pp. 1662-1664, 1998. [58] Moreno, E., F. J. Garica-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, 'Channel plasmon V-polaritons: Modal shape, dispersion, and losses,' Opt. Lett., vol. 31, pp. 3447-3449, 2006. [59] Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, 'Surface plasmon polariton based modulators and switches operating at telecom wavelengths,' Appl. Phys. Lett., vol. 85, pp. 5833-5835, 2004. [60] Novikov, I. V., and A. A. Maradudin, 'Channel polaritons,' Phys. Rev. B, vol. 66, 035403, 2002. [61] Onuki, T. et al., 'Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,' J. Microsc., vol. 210, 284-287, 2003. [62] Otto, A., 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total re flection,' Z. Physik, vol. 216, pp. 398-410, 1968. [63] Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, 'A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,' Nature Photon, vol. 2, pp. 496-500, 2008. [64] Palik, E. D., and G. Ghosh, Handbook of Optical Constants of Solids. New York: Academic, 1985. [65] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. [66] Pile, D. F. P., and D. K. Gramotnev, 'Channel plasmon-polariton in a triangular groove on a metal surface,' Opt. Lett., vol. 29, pp. 1069-1071, 2004. [67] Pile, T. Ogawa, and D. K. Gramotnev, 'Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,' Appl. Phys. Lett., vol. 87, 061106, 2005. [68] Pile, D. F. P. et al., 'Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,' Appl. Phys. Lett., vol. 87, 261114, 2005. [69] Pile, D. F. P., D. K. Gramotnev, R. F. Oulton, and X. Zhang, 'On long-range plasmonic modes in metallic gaps,' Opt. Express, vol. 15, pp. 13669-13674, 2007. [70] Peterson, A. F., 'Vector nite element formulation for scattering from two dimensional heterogeneous bodies,' IEEE Trans. Antennas Propagat., vol. AP-43, pp. 357-365, 1994. [71] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, 'Electromagnetic energy transport via linear chains of silver nanoparticles,' Opt. Lett., vol. 23, pp. 1331-1333, 1998. [72] Raether, H., Surface Plasmons. Berlin: Springer-Verlag, 1988. [73] Rebay, S., 'E cient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,' J. Comput. Phys., vol. 105, pp. 125-138, 1993. [74] Reinhardt, C., S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, and S. I. Bozhevolnyi, 'Laser-fabricated dielectric optical components for surface plasmon polaritons,' Opt. Lett., vol. 31, pp. 1307-1309, 2006. [75] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, 'Perfectly matched anisotropic absorber for use as an absorbingboundary condition,' IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. [76] Saitoh, K., and M. Koshiba, 'Approximate scalar fi nite-element beam propagation method with perfectly matched layers for anisotropic optical waveguides,' J. Lightwave Technol., vol. 19, pp. 786-792, 2001. [77] Saitoh, K., and M. Koshiba, 'Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fi bers,' IEEE J. Quantum Electron., vol. 38, pp. 927-933, 2002. [78] Satuby, Y., and M. Orenstein, 'Surface-plasmon-polariton modes in deep metallic trenches-measurement and analysis,' Opt. Exp., vol. 15, pp. 4247-4252, 2007. [79] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, 'Finite element beam propagation method,' J. Lightwave Technol., vol. 16, pp. 1336-1341, 1998. [80] Selleri, S., L. Vincetti, and M. Zoboli, 'Full-vector nite-element beam propagation method for anisotropic optical device analysis,' IEEE J. Quantum Electron., vol. 36, pp. 1392-1401, 2000. [81] Shen, L. P., W. P. Huang, and S. S. Jian, 'Design of photonic crystal fibers for dispersion-related applications,' J. Lightwave Technol., vol. 21, pp. 1644-, 2003. [82] Steinberger, B. et al., 'Dielectric stripes on gold as surface plasmon waveguides,' Appl. Phys. Lett., vol. 88, pp. 094104-094104-3, 2006. [83] Stern, M. S., P. C. Kendall, and W. A. Mcllroy, 'Analysis of the spectral index method for vector modes of rib waveguides,' IEE Proceedings J. Optoelectronics, vol. 137, pp. 21-26, 1990. [84] Tanaka, K., and M. Tanaka, 'Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,' Appl. Phys. Lett., vol. 82, pp. 1158-1160, 2003. [85] Tanaka, K., M. Tanaka, and T. Sugiyama, 'Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,' Opt. Express, vol. 13, pp. 256-266, 2005. [86] Teixeira, F. L., and W. C. Chew, 'PML-FDTD in cylindrical and spherical grids,' IEEE Microwave Guided Wave Lett., vol. 7, pp. 285-287, 1997. [87] Thyln, L., M. Qiu, and S. Anand, 'Photonic crystalsa step towards integrated circuits for photonics,' ChemPhysChem, vol. 5, pp. 1268-1283, 2004. [88] Tsuchizawa, T. et al., 'Microphotonics devices based on silicon microfabrication technology,' IEEE J. Sel. Top. Quantum Electron., vol. 11, pp. 232-240, 2005. [89] Uranus, H. P., and H. J. W. M. Hoekstra, 'Modelling of microstructured waveguides using a fi nite-element-based vectorial mode solver with transparent boundary conditions,' Opt. Express, vol. 12, pp. 2795-2809, 2004. [90] Verhagen, E., A.Polman, and L. K. Kuipers, 'Nanofocusing in laterally tapered plasmonic waveguides,' Opt. Express, vol. 16, pp. 45-47, 2008. [91] Veronis, G., and S. Fan, 'Guided subwavelength plasmonic mode supported by a slot in a thin metal film,' Opt. Lett., vol. 30, pp. 3359-3361, 2005. [92] Wang, B., and G. P. Wang, 'Surface plasmon polariton propagation in nanoscale metal gap waveguides,' Opt. Lett., vol. 29, pp. 1992-1994, 2004. [93] White, T. P. et al., 'Con nement losses in microstructured optical bers,' Opt. Lett., vol. 26, pp. 1660-1662, 2001. [94] White, T. P. et al., 'Multipole method for microstructured optical fibers. I. Formulation,' JOSA B, vol. 19, pp. 2322-2330, 2002. [95] Yan, M., and M. Qiu, 'Guided plasmon polariton at 2D metal corners,' J. Opt. Soc. Am. B, vol. 24, pp. 2333-2342, 2007. [96] Zia, R., A. Chandran, and M. L. Brongersma, 'Dielectric waveguide model for guided surface polaritons,' Opt. Lett., vol. 30, pp. 1473-1475, 2005. [97] Zia, R., J. A. Schuller, and M. L. Brongersma, 'Near- field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,' Phys. Rev. B, vol. 74, 165415, 2006. [98] Zia, R., M. D. Selker, and M. L. Brongersma, 'Leaky and bound modes of surface plasmon waveguides,' Phys. Rev. B, vol. 71, 165431, 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60577 | - |
| dc.description.abstract | 本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛
軸波束傳遞法以及完美匹配層來分析各種波導。我們分析了在非對稱 環境的金屬條狀波導、長程介電加載的表面電漿子波導、六孔圓形空 氣孔洞光纖以及三孔環狀空氣孔洞光纖。針對不同的邊界設定,我們 計算波導之有效折射率、傳播長度以及模態場型。在非對稱環境的金 屬條狀波導裡,我們分析了完美匹配層中的反射係數和結構參數變化 對於洩漏模態計算結果的影響。對於長程介電加載的表面電漿子波導, 我們計算得知此結構在波長為1.55 μm時,傳播長度可超過6 mm,並 討論不同的金屬寬度,對於模場的侷限性及傳波長度的影響。最後, 藉由六孔圓形空氣孔洞光纖以及三孔環狀空氣孔洞光纖結構,此兩種 結構在損耗上差距,我們研究在不同的邊界設定下,對於計算結果收 斂的影響。 | zh_TW |
| dc.description.abstract | In this thesis, the full-vectorial fi nite-element imaginary-distance beam propagation method (FE-ID-BPM) based on the hybrid edge/nodal elements and the perfectly matched layers (PMLs) is used to analyze various waveguides. The asymmetric
metal stripe waveguide, the long-range dielectric-loaded SPP waveguide, the six-circular-air-hole fi ber, and the three-annular-shaped-air-hole fi ber are investigated. The eff ective indices, propagation lengths, and modal fi eld pro files are calculated for various boundary settings. In the asymmetric metal stripe waveguide with a thin gold stripe layer on glass substrate surrounded by air, we analyze the leaky modes for which the calculations are refined by using different values of the PML reflection coeffi cient and structure parameters. The long-range dielectric-loaded surface plasmon polariton waveguide (LR-DLSPPW), in which a thin and narrow metal stripe is sandwitched between a square dielectric ridge and a dielectric fi lm supported by a low-index substrate, supports a fundamental long-range dielectricloaded surface plasmon polariton waveguide mode with a propagation length over 6 mm at the wavelength of 1.55 m. Various widths of the Au stripe are examined to understand different guided-mode characteristics. In the two microstructured air-hole fi bers, the convergence of the e ffective refractive indices under di fferent boundary settings is studied. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:22:12Z (GMT). No. of bitstreams: 1 ntu-102-R00941027-1.pdf: 6281649 bytes, checksum: 3b290ef2b32489dd4166ec3c2cc5d7ad (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Mathematical Formulations and Related Techniques 6 2.1 The Perfectly Matched Layers . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The Finite Element Mode Solver . . . . . . . . . . . . . . . . . . . . 8 2.3 The Finite Element Beam Propagation Method . . . . . . . . . . . . 12 2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 16 3 Analysis of Asymmetric Metal Stripe Waveguides 25 3.1 Overview: Surface Plasmon Waveguides . . . . . . . . . . . . . . . . 25 3.2 The Drude Model for Metals . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Surface Plasmon Polaritons . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Metal Stripe Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 Overview of the Metal Stripe Waveguide . . . . . . . . . . . . 32 3.4.2 IMI Multilayer System . . . . . . . . . . . . . . . . . . . . . . 33 3.4.3 Leaky and Other Modes . . . . . . . . . . . . . . . . . . . . . 35 3.4.4 Analysis of the Metal StripeWaveguide with Dierent Computational- Domain Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37 3.5 The Long-Range Dielectric-Loaded Surface Plasmon-Polariton Waveguides . . . . . . . . . . . . . . . . . . . . . . 38 i 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5.2 The LR-DLSPPW Model . . . . . . . . . . . . . . . . . . . . 39 3.5.3 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . 39 4 Analysis of Microstructured Optical Waveguides 71 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Microstructured Six-Air-Hole Fiber Waveguide . . . . . . . . . . . . . 72 4.3 Microstructured Annular-Air-Hole waveguide . . . . . . . . . . . . . . 73 5 Conclusion 90 Bibliography 92 | |
| dc.language.iso | en | |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | 波導 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | FEM | en |
| dc.subject | surface plasmon | en |
| dc.subject | waveguides | en |
| dc.title | 以全向量虛軸有限元素波束傳播法分析表面電漿子波導與微結構光波導 | zh_TW |
| dc.title | Analysis of Surface Plasmon Waveguides and Microstructured Optical Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊宗哲,鄧君豪 | |
| dc.subject.keyword | 有限元素法,波導,表面電漿子, | zh_TW |
| dc.subject.keyword | FEM,surface plasmon,waveguides, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
