Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60568Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃國倉(Kuo-Tsang Huang) | |
| dc.contributor.author | Wen-Yuan Yu | en |
| dc.contributor.author | 余文元 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:21:55Z | - |
| dc.date.available | 2018-08-25 | |
| dc.date.copyright | 2013-08-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 1. 陳姵妤,2010,爬藤值物綠化對於建築降溫效果之研究。國立臺灣大學土木工程研究所碩士論文,臺灣。
2. 陳彥宇,2007,常見室內植物對甲醛及二氧化碳之吸收及反應 ,國立臺灣大學植物病理與微生物學研究所,臺灣。 3. 余嘉閔,2010,以植栽改善室內空氣品質之數值模擬與建構-以室內二氧化碳濃度為例 。國立勤益科技大學冷凍空調與能源所,臺灣。 4. 行政院環境保護署,2007,淨化室內空氣之植物-應用及管理之手冊, 臺灣。 5. 經濟部編準檢驗局,中華民國國家標準CNS 室內環境熱舒適度量測法,臺灣。 6. 郭魁士,1997,土壤學,臺灣。 7. 林玉貴、翁彩瓊,2010,室內綠牆設計需求及模式探討,中華民國建築學會第二十二屆第一次建築研究成果發表會論文集,臺灣。 8. 內政部建築研究所,2010,綠建築解說與評估手冊,臺灣。 9. 尹道鏹,2010,臺北科技大學設計學院大樓西向壁面綠化設計,臺北科技大學建築與都市設計研究所,臺灣。 10. 黃世孟,2009,建築物的垂直綠化與風土外牆設計,臺灣。 11. 宋苾璇,2001,利用紅外線熱像技術觀測環境綠化效果之研究,國立台灣科技大學建築研究所,臺灣。 12. 林玉貴,2011,智慧化室內綠牆感知系統設計之探討,私立中華科技大學建築工程與環境設計研究所,臺灣。 13. 蘇敬琇,2008,建築物附加物對室內溫熱環境之影響評估─以高雄市商業建築物為例,樹德科技大學建築與古蹟維護系碩士班,臺灣。 14. 林芳毅,2004,傳統合院建築調查與室內溫熱環境之研究─以高雄市楠梓區後勁林家古厝為例,樹德科技大學建築與古蹟維護系碩士班,臺灣。 15. 楊靜宜,2008,自然通風教室熱舒適度研究-以南投縣爽文國小為例,私立朝陽科技大學環境工程與管理系,臺灣。 16. 陳銘雄,2005,從熱舒適度探討學校普通教室節能策略,私立朝陽科技大學環境工程與管理系,臺灣。 17. 許瑞銘,2006,屋頂綠化熱效益之研究,私立朝陽科技大學建築及都市設計研究所,臺灣。 18. 洪筱梅,2009,室內工作環境的植栽綠視率對心理復癒效益之研究,私立逢甲大學景觀與遊憩碩士學位學程碩士論文,臺灣。 19. 陳榮坤,2011,數位影像在量測植物葉面積之應用,臺南區農業專訊,臺灣。 20. 余思嫻,2012,工地圍籬綠美化對視覺偏好之影響研究,私立逢甲大學景觀與遊憩碩士學位學程碩士論文,臺灣。 21. 周志承,蔡宗勳,郭志成,2009,從綠建築角度探討垂直綠牆之研究,中華民國建築師公會全國聯合會 第六屆台灣建築論壇-921 震災10 週年回顧及展望,臺灣。 22. 林千惠,2010,溫度經歷與人體熱舒適關聯性之實驗研究,國立雲林科技大學環境與安全衛生工程系碩士班,臺灣。 23. 台灣電力公司,2012,電價表。 24. 洪得娟譯,1993,【新綠化空間設計指南2】,台北市:地景出版社。備註:(原編著-日本財團法人都市綠化技術開發機構,原發行-日本株式會社誠文堂新光社) 25. 林憲德,2009,人居熱環境-建築風土設計的第一課,臺灣。 26. 周杰良,2009,7種室內盆栽觀葉植物生態功能的比較研究,中國大陸。 27. Ugo M.a., Fabio .P. a, Piercarlo. R.a, Riccardo .M. P.,Simone.B.b.,2013, Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment,64,57-66. 28. Juri Yoshimi and Hasim Altan , 2011.Thermal simulation on the effects of vegetated walls on indoor building environments,12th Conference of International Building Performance Simulation. 29. Stav, Y., Lawson,G.,2012, Vertical vegetation design decisions and their impact on energy consumption in subtropical cities, The Sustainable City VII : Urban Regeneration and Sustainability, WIT Press, Ancona, Italy, pp.489-500. 30. Wong, N.H., Tan, A.Y.K., Chen,Y. , Kannagi, S, Tan,P.Y.,Chan,D., Chiang ,K.,Wong,N.C,2010, Thermal evaluation of vertical greenery systems for building walls, Building and Environment, 45, 663-672. 31. Rafael F.-C. , Luis P.-U. ,and Antonio F.-S.,2011.Assessment of the Cooling Potential of an Indoor Living Wall using Different Substrates in a Warm Climate. Indoor and Built Environ , DOI: 10.1177/1420326X11420457. 32. Ottelea ,M., Perinib, K., Fraaij, A.L.A., Haasa, E.M., Raiteri, R. ,2011, Comparative life cycle analysis for green fac﹐ ades and living wall systems, Energy and Buildings ,43,3419–3429. 33. Wong, N.H., Tan, A.Y.K., Tan, P.Y., Chiang, K., Wong, N.C.,2010. Acoustics Evaluation Of Vertical Greenery Systems For Building Walls. Building and Environment, 45, 411-420. 34. Fabricio,B., Kasun,H.,2012 ,Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Building and Environment, 58, 152-162. 35. Van Hoof, J., 2008.Forty years of Fanger’s model of thermal comfort: comfort for all Indoor Air. 18(3): p. 182-201. 36. Feriadi, H., et al., 2002. “Redefining appropriate thermal comfort standard for naturally ventilated buildings in tropics(Singapore and Indonesia perspective),” In:Monterey Proceedings of the indoor air,110-115. 37. de Dear, R.J. and G.S. Brager, 1998. Developing an adaptive model of thermal comfort and preference. ASHRAE Transactions. 104(1): p. 145-167. 38. ASHRAE, THERMAL COMFORT, 2009. Thermal Environmental Conditions for Human Occupancy. American Society of Heating,Refrigerating and Air-Conditioning Engineers: Atlanta, USA. 39. ASHRAE, ANSI/ASHRAE Standard 55-2010, 2010. Thermal Environmental Conditions for Human Occupancy. American Society of Heating,Refrigerating and Air-Conditioning Engineers: Atlanta, USA. 40. ISO, Internatioanl Standard 7730, 2005. Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria,International Organization for Standardization: Geneva, Switzerland. 41. ISO, ISO 7726, 1998. “Ergonomics of the thermal environment-Instruments for measuring physical quantities,” Internation Standards Orgenisation, Geneva. 42. Liang, H.-H., T.-P. Lin, and R.-L. Hwang, 2012.Linking occupants’ thermal perception and building thermal performance in naturally ventilated school buildings. Applied Energy. 94(0): p. 355-363. 43. Fanger, P. O.,1970a.Thermal Comfort: Analysis and Applications in Environmental Engineering. Mc Graw-Hill Inc, New York. 44. Fanger, P. O.,1970b.Thermal Comfort: Analysis and Applications in Environmental Engineering. Copenhagen: Danish Technical Press. 45. Humphreys, M., and Hancock, M., 2007. “Do people like to feel ‘neutral’? Exploring the variation of the desired thermal sensation on the ASHRAE scale,” Energy Build, 39, 867-878. 46. Humphreys, M. A., and Nicol, J. F., 2000.“Outdoor temperature and indoor thermal comfort: raising the precision of the relationship for the 1998 ASHRAE database of field studies,” ASHRAE Transactions, 106, 485-492. 47. Takakura, T., Kitade, S., Goto, E.,2000. Cooling effect of greenery cover over a building. Energy Build, 31, 1-6. 48. Jeffrey Langholz,2003,You Can Prevent Global Warming (and Save Money!): 51 Easy Ways,USA。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60568 | - |
| dc.description.abstract | 隨著都市的開發及人為的破壞,地球暖化及都市熱島越來越熱嚴重,人們停留在室內時間也隨之增加,在臺灣溫熱帶氣候要維持室內舒適環境必須仰賴空調設備,相對的也造成大量的能源消耗。如何透過節能的方式來達到有效舒適的室內環境,成為當前重要的議題。近年來植栽牆廣泛的被使用在室內空間上如機場及商場空間,許多文獻也指出植物有舒壓、降溫及淨化空氣溫等..提升室內環境品質等效益,由此可知植栽牆對於增加室內舒適度及空調節能上有很大的潛力。但回顧文獻大部分植栽牆的研究多著墨於植栽牆附掛於建築外牆後對室內溫熱環境的影響,鮮少研究直接探討室內植栽牆對室內舒適度的影響。因此本研究從室內舒適度的觀點著手,來探討植栽牆對室內溫熱境境的影響以及空調節能上的效益,提供設計者未來在使用室內植栽牆時參考依據。本研究採用全尺度實驗室以自動連續量測法進行室內環境因子的監測。在實驗規劃上為了增加研究結果的應用性,將實驗分成兩個階段,第一個階段將貨櫃屋模擬鐵皮屋室內空間,第二個是貨櫃屋增設隔熱層模擬一般居住空間,分別進行室內舒適環境觀測及空調實驗。在第二個階段中進行不同綠覆率實驗,提供植栽牆使用時合適綠覆率參考。在室內舒適度分析上採用ASHRAE之熱適應模型及ISO7730的PMV-PPD模式,雙重模式進行室內舒適度分析。
此外,為擴及評估夏季過熱與冬季過冷之長期熱不舒適以彌補實測期間之不足,本研究建立室內植栽牆模型,運用EnergyPlus來進行全年逐時模擬,解析植栽牆對室內全年長期熱舒適之影響。模擬結果採用ISO 7730所建議之長期熱不舒適評估法,區分熱不舒適與冷不舒適,評估鐵皮屋於室內植栽改善前後之過熱與過冷之發生頻率及其嚴重程度差異,藉以量化室內植栽牆對提升室內熱舒適度之效益。 經由實驗結果可得知,室內增加植栽牆之後在不同季節對室內環境有不同影響。在冬季冷氣團時期,植栽牆會造成室內冷不舒適更嚴重,所以不適用。在春季時期鐵皮屋的室內空間下,室內植栽牆可提供降低室內空氣溫度1.52度及平均輻射溫度2.6度的效益,並且淨化室內二氧化碳濃度55.7ppm的效益。在夏季時期貨櫃屋增設隔熱層的室內空間下,室內植栽牆可降低室內空氣溫度3.5度及平均輻射溫度3.7度效益,但是卻會提高室內二氧化濃度110.9ppm。在室內舒適度上,經由熱適應模式分析結果,室內增加植栽牆可以提升室內舒適度。但是在PMV-PPD模式分析結果,室內增加植栽牆反而增加室內不舒適,主要原因為室內植栽牆增加室內相對濕度的緣故所造成。所以建議室內使用植栽牆時需保持室內空氣流動,來改善植栽牆對室內造成空氣相對濕度增加的問題;在綠覆率實驗中,植栽牆綠覆率1/2對於達到室內舒適環境的效益最好,主要原因為夏季高溫會造成植栽牆的土壤對室內環境的影響大於植物本身對室內環境的改善效益;在空調實驗中,室內增加植栽牆能有效降低用電量,一個月可節省8.64度電,夏季用電期間可節省116.9元。在EnergyPlus模擬全長期不舒適度嚴重度及發生頻率上,可得知植栽牆適用於辦公類型空間中,能有效降低室內熱不舒適嚴重度及過熱現象的發生頻率。 綜合以上結果,室內空間使用植栽牆可提升室內舒適度並且降低用電量,但是必須保持室內空氣流動改善室內濕度增加的問題。 | zh_TW |
| dc.description.abstract | Along with the urban development and the man-made destruction, global warming and urban heat island have become a growing phenomenon, which increase the time people staying indoors. In subtropical Taiwan, it relies on air conditioner to maintain a comfortable indoor environment; however, it causes significant energy consumption. Therefore how to achieve a comfortable and energy- effective indoor environment becomes an important issue nowadays. In recent years, the vegetated wall is widely used for the interior spaces, such as airports and commercial areas. Many researches already pointed out that vegetation help release human’s pressure, cool down the air temperature, and purify the air…etc. Based on these many benefits, it’s supposed that vegetated wall have great potential to improve the quality of indoor environment and save up more energy.
Most of the research done on the theme of vegetated wall shed light on the influence brought to the indoor thermal comfort after the vegetated wall were attached to the exterior surface of a building. Therefore my research will approach from the perspective of the vegetated wall set inside the building, and how it can improve the indoor comfort.The research quantified the indoor thermal effect of the vegetated wall by experiment in two full –scaled laboratories. The experiment was divided into two stages. In the first stage the experiment measured the indoor environment condition of the metal sheet house. In the next stage, the house was added an insulation layer to simulate common residential houses. On the indoor comfort analysis using the adaptive model of ASHRAE and the PMV- PPD model of ISO7730, that dual model analysis of indoor comfort was divided into two stages for better research results. The research simulated the annual long-term vegetated effect on hourly indoor thermal condition by Energyplus.in order to assess the degree of over cool and over heat alleviated by vegetated wall during cold period and hot period. Simulation results using long-term thermal discomfort analysis suggested by ISO 7730 show the difference between thermal discomfort and cold discomfort, and to evaluate the before and the after when the vegetation is added to the metal sheet house. By calculating the frequency and severity of thermal discomfort and cold discomfort, the results can be quantified for assessing the efficiency of the vegetated wall to promote the indoor thermal comfort. Through the experimental results, increasing the indoor plant wall in different seasons has different influences on the indoor environment. During the cold winter, this wall can cause coolness so it does not apply. In the spring period, the vegetated wall could provide a reduction of 1.52 degrees indoor air temperature and 2.6 degrees Mean Radiant Temperature, and purified indoor CO2 concentration for 55.7 PPM. In the summer period with added insulation layer in the indoor space, the vegetated wall could reduce 3.5 degrees indoor air temperature and 3.7 degrees Mean Radiant Temperature, but increase 110.9 PPM the indoor CO2 concentration. As for the indoor thermal comfort analysis, increasing the vegetated wall can improve the indoor comfort. But PMV-PPD model shows that the house with vegetated wall is more discomfort than the house without vegetated wall. This is the main reason the vegetated wall increases humidity. So suggesting vegetated wall which maintain indoor air flow improves the problem of the increase in humidity. In the green cover experiment, the green wall layer rate is 1/2 to achieve the best comfortable indoor environment. The main reason for this is the summer heat can cause the garden soil of the wall's influence on the indoor environment to be greater than the plant itself on the indoor environment. In the air conditioning experiments, the indoor added green wall can effectively reduce power consumption, saving 8.64 KWH per month during the summer season could save 116.9 TWD. In the EnergyPlus simulation on the severity and frequency of discomfort over a long period of time, we can learn that the vegetated wall is suitable for the appropriate type of office space, thus the wall can effectively reduce the severity and frequency of the indoor overheating phenomenon. To conclude the above results, the interior space using the vegetated wall can improve indoor comfort and lower power consumption, under the circumstance of maintaining indoor air flow which helps prevent the increase of humidity indoor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:21:55Z (GMT). No. of bitstreams: 1 ntu-102-R00622033-1.pdf: 7225741 bytes, checksum: c56119f2eadd6ed9de1bbb37929adccc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目 錄
中文摘要 i Abstract iii 目 錄 v 表目錄 ix 圖目錄 xi 第一章 諸論 1 1.1研究動機及目的 1 1.2研究範圍及內容 1 1.2.1研究範圍 1 1.2.2研究內容 2 1.3研究流程 3 第二章 文獻回顧 5 2.1植栽改善室內環境效益 5 2.2室內溫熱舒適環境要素 9 2.2.1溫度 10 2.2.2 風速 10 2.2.3濕度 10 2.2.4輻射溫度 11 2.3 熱舒適定義 11 2.4 熱舒適指標 12 2.5室內植栽立體綠化系統 15 第三章 研究方法與理論 21 3.1 研究方法 21 3.2室內輻射溫度 27 3.3 實驗場所 28 3.3.1 實驗場所配置 28 3.3.2 全尺度實驗室 29 3.3.3 植栽牆系統 31 3.4 實驗儀器與設備 35 3.4.1實驗儀器與設備介紹 35 3.4.2實驗儀器架設位置 36 3.4.3實驗設備儀器校正 43 3.5實驗規劃 45 3.5.1實驗室隔熱層裝設 48 3.5.2歸零實驗 49 3.6 植生牆室內綠覆率 52 第四章 結果與討論 57 4.1鐵皮屋室內溫熱環境分析 58 4.1.1鐵皮屋室內環境植栽牆正面空氣溫度變化 58 4.1.2冬季冷氣團時期分析 62 4.1.3 春季時期分析 68 4.2夏季時期分析(鐵皮屋加隔熱層室內溫熱環境分析) 76 4.2.1鐵皮屋加隔熱層室內環境植栽牆正面空氣溫度變化 76 4.2.2溫度逐時變化分析 80 4.2.3室內平均輻射溫度逐時變化分析 82 4.2.4室內相對濕度逐時變化分析 84 4.2.5室內二氧化碳逐時變化分析 86 4.2.6熱舒適度指標-PMV-PPD模式分析 88 4.2.7熱舒適指標-熱適應模式分析 89 4.2.8 空調節能效益分析 92 4.2.9空調環境下濕度變化分析 95 4.3 植栽牆管理維護 97 4.4綜合討論 99 第五章 採用Energy plus 建築能源模擬軟體進行全年長期熱舒適分析 107 5.1 驗證綠牆模型 108 5.2 全年長期不舒適嚴重度分析 110 5.2.1熱適應模式長期熱不舒適嚴重度及不舒適發生頻率 110 5.2.2 PMV-PPD模式長期不舒適嚴重度及不舒適發生頻率 112 5.2.3 小結 113 5.3 辦公室類型全年長期不舒適嚴重度分析 113 5.3.1熱適應模式長期熱不舒適嚴重度及不舒適發生頻率 114 5.3.2 PMV-PPD模式長期不舒適嚴重度及不舒適發生頻率 115 5.4.3 小結 116 5.4 住宅類型全年長期不舒適嚴重度分析 117 5.4.1熱適應模式長期熱不舒適嚴重度及不舒適發生頻率 117 5.4.2 PMV-PPD模式長期不舒適嚴重度及不舒適發生頻率 118 5.4.3 小結 120 第六章 結論與建議 121 6.1結論 121 6.2 建議 122 文獻參考 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 室內植栽牆、熱舒適、建築能源模擬、熱適應模式、PMV-PP | zh_TW |
| dc.subject | the vegetated wall | en |
| dc.subject | thermal comfort and building energy simulation | en |
| dc.subject | the adaptive mode | en |
| dc.subject | PMV-PPD | en |
| dc.title | 室內植栽牆對室內溫熱環境及空調節能效益之研究 | zh_TW |
| dc.title | Research on Indoor Thermal Environment and Cooling Energy Saving of Indoor Vegetated Wall | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林子平,黃瑞隆,胡明哲 | |
| dc.subject.keyword | 室內植栽牆、熱舒適、建築能源模擬、熱適應模式、PMV-PP, | zh_TW |
| dc.subject.keyword | the vegetated wall, thermal comfort and building energy simulation, the adaptive mode, PMV-PPD, | en |
| dc.relation.page | 126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| Appears in Collections: | 生物環境系統工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 7.06 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
