Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60564
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor柯淳涵(Chun-Han Ko)
dc.contributor.authorYu-Sheng Wangen
dc.contributor.author王宇笙zh_TW
dc.date.accessioned2021-06-16T10:21:47Z-
dc.date.available2016-08-22
dc.date.copyright2013-08-22
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationAbbott, D. W. and A. B. Boraston. (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods in Enzymolgy, 510: 211-231.
Arai, M., J. C. Ferreon and P. E. Wright. (2012) Quantitative analysis of multisite protein-ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP. Journal of the American Chemical Society 134(8): 3792-3803.
Ash, C., F. G. Priest and M. D. Collins. (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64(3-4): 253-260.
Bastawde, K. B. (1992) Xylan structure, microbial xylanases, and their mode of action. World Journal of Microbiology and Biotechnology 8(4): 353-368.
Beg, Q. K., M. Kapoor, L. Mahajan and G. S. Hoondal. (2001) Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology 56(3-4): 326-338.
Bolam, D. N., A. Ciruela, S. McQueen-Mason, P. Simpson, M. P. Williamson, J. E. Rixon, A. Boraston, G. P. Hazlewood and H. J. Gilbert. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochemical Journal 331(3): 775-781.
Bonvin, A. M., R. Boelens and R. Kaptein. (2005) NMR analysis of protein interactions. Current Opinion in Structural Biology 9(5): 501-508.
Boraston, A. B., D. N. Bolam, H. J. Gilbert and G. J. Davies. (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochemical Journal 382(3): 769-781.
Bourne, Y. and B. Henrissat. (2001) Glycoside hydrolases and glycosyltransferases: families and functional modules. Current Opinion in Structural Biology 11(5): 593-600.
Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard and B. Henrissat. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37(Database issue): D233-238.
Carrard, G., A. Koivula, H. Soderlund and P. Beguin. (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proceedings of the National Academy of Sciences of the United States of America 97(19): 10342-10347.
Chen, S. C., C. F. Chang, P. J. Fan, Y. H. Cheng, T. Yu and T. H. Huang. (2013) 1H, 13C and 15N resonance assignments of the C-terminal DNA-binding domain of RstA protein from Klebsiella pneumoniae. Biomolecular NMR Assignments 7(1): 85-88.
Collins, T., C. Gerday, and G. Feller. (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews 29(1): 3-23.
Ferentz, A. E. and G. Wagner. (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Quarterly Reviews of Biophysics 33(1): 29-65.
Gao, P. J., G. J. Chen, T. H. Wang, Y. S. Zhang and J. Liu. (2001) Non-hydrolytic Disruption of Crystalline Structure of Cellulose by Cellulose Binding Domain and Linker Sequence of Cellobiohydrolase I from Penicillium janthinellum. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 33(1): 13-18.
Greenfield, N. J. (2006) Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols 1(6): 2876-2890.
Guillen, D., S. Sanchez and R. Rodriguez-Sanoja. (2010) Carbohydrate-binding domains: multiplicity of biological roles. Applied Microbiology and Biotechnology 85(5): 1241-1249.
Hashimoto, H. (2006) Recent structural studies of carbohydrate-binding modules. Cellular and Molecular Life Sciences 63(24): 2954-2967.
Henrissat, B., M. Claeyssens, P. Tomme, L. Lemesle and J. P. Mornon. (1989) Cellulase families revealed by hydrophobic cluster analysis. Gene 81(1): 83-95.
Henshaw, J. L., D. N. Bolam, V. M. Pires, M. Czjzek, B. Henrissat, L. M. Ferreira, C. M. Fontes and H. J. Gilbert. (2004) The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities. Journal of Biological Chemistry 279(20): 21552-21559.
Jamal-Talabani, S., A. B. Boraston, J. P. Turkenburg, N. Tarbouriech, V. M. Ducros and G. J. Davies. (2004) Ab initio structure determination and functional characterization of CBM36; a new family of calcium-dependent carbohydrate binding modules. Structure 12(7): 1177-1187.
Keller, R (2004) The computer aided resonance assignment tutorial. Cantina Verlag, Switzerland.
Kim, D. E., D. Chivian and D. Baker. (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research 32(Web Server issue): W526-531.
Kingston, R. L., D. J. Hamel, L. S. Gay, F. W. Dahlquist and B. W. Matthews. (2004) Structural basis for the attachment of a paramyxoviral polymerase to its template. Proceedings of the National Academy of Sciences of the United States of America 101(22): 8301-8306.
Ko, C. H., W. L. Chen, C. H. Tsai, W. N. Jane, C. C. Liu and J. Tu. (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresource Technology 98(14): 2727-2733.
Ko, C. H., C. H. Tsai, J. Tu, H. Y. Lee, L. T. Ku, P. A. Kuo and Y. K. Lai. (2010) Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochemistry 45(10): 1638-1644.
Larkin, M. A., G. Blackshields, NP. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J . Gibson and D. G. Higgins. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21): 2947-2948.
Mercier, P., M. X. Li and B. D. Sykes. (2000) Role of the structural domain of troponin C in muscle regulation: NMR studies of Ca2+ binding and subsequent interactions with regions 1-40 and 96-115 of troponin I. Biochemistry 39(11) 2902-2911.
Montanier, C., A. L. van Bueren, C. Dumon, J. E. Flint, M. A. Correia, J. A. Prates, S. J. Firbank, R. J. Lewis, G. G. Grondin, M. G. Ghinet, T. M. Gloster, C. Herve, J. P. Knox, B. G. Talbot, J. P. Turkenburg, J. Kerovuo, R. Brzezinski, C. M. Fontes, G. J. Davies, A. B. Boraston, and H. J. Gilbert. (2009) Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proceedings of the National Academy of Sciences of the United States of America 106(9): 3065-3070.
Nagy, T., Simpson, P., Williamson, M. P., Hazlewood, G. P., Gilbert, H. J., and Orosz, L. (1998) All three surface tryptophans in Type IIa cellulose binding domains play a pivotal role in binding both soluble and insoluble ligands. FEBS Letters 429(3): 312-316.
Pace, C. N., F. Vajdos, L. Fee, G. Grimsley and T. Gray. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Science 4(11): 2411-2423.
Pell, G., M. P.Williamson, C.Walters, H. Du, H. J. Gilbert and D. N. Bolam. (2003) Importance of hydrophobic and polar residues in ligand binding in the family 15 carbohydrate-binding module from Cellvibrio japonicus Xyn10C. Biochemistry 42(31): 9316-9323.
Pettersen E. F., T. D. Goddard, C. C. Huang, G.S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13): 1605-1612.
Sattler, M., J. Schleucher and C. Griesinger. (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Progress in Nuclear Magnetic Resonance Spectroscopy 34(2): 93-158.
Shallom, D., and Y. Shoham. (2003) Microbial hemicellulases. Current Opinion in Microbiology 6(3): 219-228.
Shen, Y., O. Lange, F. Delaglio, P. Rossi, J. M. Aramini, G. Liu, A. Eletsky, Y. Wu, K. K. Singarapu, A. Lemak, A. Ignatchenko, C. H. Arrowsmith, T. Szyperski, G. T. Montelione and A. Bax. (2008) Consistent blind protein structure generation from NMR chemical shift data. Proceedings of the National Academy of Sciences 105(12): 4685-4690.
Simpson, P. J., H. Xie, D. N. Bolam, H. J. Gilbert and M. P. Williamson. (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. Journal of Biological Chemistry 275(52): 41137-41142.
Sunna, A., and G. Antranikian. (1997) Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology 17(1): 39-67.
Takahasi, K., H. Kumeta, N. Tsuduki, R. Narita, T. Shigemoto, R. Hirai, M. Yoneyama, M. Horiuchi, K. Ogura, T. Fujita and F. Inagaki. (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. Journal of Biological Chemistry 284(26): 17465-17474.
Tormo, J., R. Lamed, A. J. Chirino, E. Morag, E. A. Bayer, Y. Shoham and T. A. Steitz. (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO Journal 15(21): 5739-5751.
Widmer, H. and Jahnke, W. (2004) Protein NMR in biomedical research. Cellular and Molecular Life Sciences 61(5): 580-599.
Wishart, D. S. and B. D. Sykes. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. Journal of Biomolecular NMR 4(2): 171-180.
Wong, K. K., L. U. Tan and J. N. Saddler. (1988) Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiological Reviews 52(3): 305-317.
Xie, H., H. J. Gilbert, S. J. Charnock, G. J. Davies, M. P. Williamson, P. J. Simpson, S. Raghothama, C. M. Fontes, F. M. Dias, L. M. Ferreira and D. N. Bolam. (2001) Clostridium thermocellum Xyn10B carbohydrate-binding module 22-2: the role of conserved amino acids in ligand binding. Biochemistry 40(31): 9167-9176.
Yoon, J. H., D. K. Yim, J. S. Lee, K. S. Shin, H. H. Sato, S. T. Lee, Y. H. Park and Y. H. Park. (1998) Paenibacillus campinasensis sp. nov., a cyclodextrin-producing bacterium isolated in Brazil. International Journal of Systematic and Evolutionary Microbiology 48(3): 833-837.
Zuiderweg, E. R. (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41(1): 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60564-
dc.description.abstract一分離自黑液前漂漿的Paenibacillus campinasensis BL11菌株可分泌出許多針對不同多醣類的水解型酵素,其中有一β-1,4-鍵結內切型木聚醣酶(命名為XylX)在不同pH值展現出優異的酵素活性作用,同時擁有良好的溫度耐受性。因此,此酵素被認為是利用於木聚醣降解相關之生物工程產業上為一良好候選者。酵素XylX具有一非催化性片段,其為碳水化合物結合模組(carbohydrate binding module, CBM),此蛋白模組是常見於水解型酵素中的一輔助型片段,而此模組通常依附於催化區段,並負責調控與不可溶的碳水化合物的專一性吸附作用,藉以提升整體酵素的水解效果。於此論文中,我們利用核磁共振針對XylX當中的第36號家族的碳水化合物結合模組之蛋白質進行研究,完成了核磁共振光譜中主鏈與側鏈於之循序判定,除此並結合其他分子生物檢測工具藉以了解其基本結構與功能之關聯性,其中包括對其基質作用之專一性及親和性、蛋白質二級與三級結構的預測以及確認木聚醣和鈣離子於此蛋白質上所結合的區域;相信此資訊將有利於未來對於碳水化合物結合模組與碳水化合物之動態分析以及於醣甘鍵結水解酶上的生物工程之應用。zh_TW
dc.description.abstractPaenibacillus campinasensis BL11 was isolated from black liquor and secretes multiple hydrolytic enzymes against various polysaccharides. One of endo-β-1, 4-xylanase (denote as XylX) demonstrates a high enzymatic activity in a wide range of pH and thermal endurance, that has been considered as an excellent candidate in xylan-degrading related biotechnological processing. XylX contains one non-catalytic domain, i.e. carbohydrate binding module (CBM); which is most frequently appeared ancillary domain in hydrolases. These kinds of modules usually appended to catalytic domain and mediate the specific interaction with insoluble carbohydrate to promote hydrolysis efficiency of entire enzyme. In this work, we conducted a NMR study of CBM segment of family 36 (PcCBM36) derived from XylX. And the backbone and side-chain sequential resonance assignments were completed. In addition, in combination with other biophysical tools, we have studied the structural and functional properties of PcCBM36, including secondary and tertiary structural prediction and its binding behavior against endo-β-1, 4-xylan linkage and calcium ion. As believed, this study will facilitate molecular dynamics analysis of interaction between CBMs and carbohydrate, whereas the engineering for glycoside hydrolases (GHs).en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:21:47Z (GMT). No. of bitstreams: 1
ntu-102-R00625038-1.pdf: 4515513 bytes, checksum: 96a1e00bebb1a9ecba9d69ca62a36c89 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 i
Abstract ii
Index iii
Table index v
Figure index vi
I Introduction 1
II Literature reviews 3
1. Paenibacillus campinasensis 3
2. Xylan and endo-1,4-β-xylanase 4
3. Carbohydrate binding module 6
4. CBM6-36 xylanase like superfamily 10
5. Protein NMR spectroscopy 13
III Objective 15
IV Materials and methods 16
1. Overexpression and purification of PcCBM36 16
2. Characterization of PcCBM36 18
2.1 Solid state depletion assay 18
2.2 Surface Plasmon Resonance (SPR) 19
2.3 Circular dichroism (CD) 20
3. NMR spectroscopy 20
3.1 1H, 13C and 15N sequential backbone and sidechain NMR assignments 20
3.2 Secondary and tertiary structure modeling 21
3.3 Titration of PcCBM36 against different ligands by NMR spectroscopy 22
V Results and Discussions 22
1. Overexpression and purification of PcCBM36 22
2. Characterization of PcCBM36 23
2.1 Solid state depletion assay for binding specificity 23
2.2 Surface Plasmon Resonance (SPR) 24
2.3 Circular dichroism (CD) 26
3. NMR spectroscopy 27
3.1 1H, 13C and 15N sequential backbone and sidechain NMR assignments 27
3.2 Secondary and tertiary structure modeling 28
3.3 Titration of PcCBM36 against different ligands by chemical shift perturbation mapping 32
3.3.1 Binding surface of PcCBM36 against to xylohexaose 33
3.3.2 The chelating region of two calcium ion in PcCBM36 38
4. The binding surface between PcCBM36 and xylooligosaccharide 46
5. The role of calcium ion participate in PcCBM36 48
VI Conclusion and future works 51
VII References 52
Appendix A Protein sequence 56
Appendix B Compounds formula 57
dc.language.isoen
dc.subject木聚醣&#37238zh_TW
dc.subject碳水化合物結合模組zh_TW
dc.subject核磁共振zh_TW
dc.subjectNMRen
dc.subjectxylanen
dc.subjectCarbohydrate binding modules (CBM)en
dc.title小枯草桿菌BL11木聚醣酶XylX碳水化合物模組結構研究結合zh_TW
dc.titleStructural investigation for carbohydrate-binding module of Paenibacillus campinasensis BL11 xylanase XylXen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor鄒德里(Tzou, Der-Lii M.)
dc.contributor.oralexamcommittee吳東昆(Tung-Kung Wu),杜鎮(Jenn Tu),鄭建中(Chien-Chung Cheng)
dc.subject.keyword碳水化合物結合模組,核磁共振,木聚醣&#37238,zh_TW
dc.subject.keywordCarbohydrate binding modules (CBM),NMR,xylan,en
dc.relation.page57
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
Appears in Collections:森林環境暨資源學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
4.41 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved