請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60558完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟(Guo-Dung Su) | |
| dc.contributor.author | Yi-Shiuan Cherng | en |
| dc.contributor.author | 程怡瑄 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:21:36Z | - |
| dc.date.available | 2018-09-07 | |
| dc.date.copyright | 2013-09-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006.
Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 46, pp. 1281-1284, 1988. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, pp. 759-766, 1990. T. R. Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication”, Optical Engineering, vol. 33, pp. 3552-3555, 1994. H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, H. Thienpont, “Plastic microlens arrays by deep lithography with protons: fabrication and characterization,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 281-284, 2003. K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Applied Optics, vol. 42, pp. 6349-6359, 2003. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, ” Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, 1994. J. Kim, K.-H. Jeong, and L. P. Lee, “Artificial ommatidia by self-aligned microlenses and waveguides,” Optics Letters, vol. 30, pp. 5-7, 2005. A. D. Straw, E. J. Warrant and D. C. O’Carroll, “A ‘bright zone’ in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” Journal of Experimental Biology, vol. 209, pp. 4339-4354, 2006. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound Eyes,” Science, vol. 312, pp. 557-561, 2006. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Applied Optics, vol. 40, pp. 1806-1813, 2001. J. W. Duparre and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspiration & Biomimetics, vol. 1, pp. R1-R16, 2006. D. Radtke, J. Duparre, U. D. Zeitnerb, and A. Tunnermann, “Laser lithographic fabrication and characterization of a spherical artificial compound eye,” Optics Express, vol. 15, pp. 3067-3077, 2007. D. Zhu, X. Zeng, C. Li, and H. Jiang, “Focus-tunable microlens arrays fabricated on spherical surfaces,” Journal of Microelectromechanical Systems, vol. 20, pp. 389-395, 2011. B. Aldalali, D. Zhu, and H. Jiang, “Fabrication of polydimethylsiloxane microlens arrays on curved surfaces,” in Proceedings International Conference on Optical MEMS & Nanophotonics, Istanbul, Turkey, pp. 239-240, 2011. H. Zhang, L. Li, D. L. McCray, D. Yao, and A. Y. Yi, “A microlens array on curved substrates by 3D micro projection and reflow process,” Sensors and Actuators A, vol. 179, pp. 242-250, 2012. L. Li and A. Y. Yi, “Microfabrication on a curved surface using 3D microlens array projection,” Journal of Micromechanics and Microengineering, vol. 19, pp. 105010, 2009. P. Qu, F. Chen, H. Liu, Q. Yang, J. Lu, J. Si, Y. Wang, and X. Hou, “A simple route to fabricate artificial compound eye structures,” Optics Express, vol. 20, pp. 5775-5782, 2012. D. Floreano, R. P.-Camara, S. Viollet, F. Ruffier, A. Bruckner, R. Leitel, W. Bussc, M. Menouni, F. Expert, R. Juston, M. K. Dobrzynski, G. L’Eplattenier, F. Recktenwald, H. A. Mallot, and N. Franceschini, “Miniature curved artificial compound eyes,” in Proceedings of the National Academy Sciences, vol. 110, pp. 9267-9272, 2013. A. R. Lingley, M. Ali, Y. Liao, R. Mirjalili, M. Klonner, M. Sopanen, S. Suihkonen, T. Shen, B. P. Otis, H. Lipsanen, and B. A. Parviz, “A single-pixel wireless contact lens display,” Journal of Micromechanics and Microengineering, vol. 21, pp. 125014, 2011. B. A. Parviz, “Augmented reality in a contact lens,” IEEE Spectrum, vol. 46, pp. 36-41, 2009. P.-C. Huang, “Bio-inspired compact camera using curved microlens array,” Master Thesis, National Taiwan University, 2013. A. Ghatak, Optics, 4th ed. New Delhi: Tata McGraw-Hill, 2009. R. E. Fischer, Optical system design, 2nd ed. McGraw-Hill, 2000. A. Miks and J. Novak, “Conditions for identical position of optimal image plane for axial imaging with different values off-number,” Optics Communications, vol. 284, pp. 2420-2423, 2011. J.-H. Sun, T.-K. Liu, Y.-C. Fang, C.-M. Tsai, and H.-C. Lin, “Optimization of 350× optical zoom lens with diffractive optical element,” Optik, vol. 121, pp. 1912-1918, 2010. C.-Y. Chen, W.-C. Su, Y.-F. Wang, and C.-H. Chen, “Reduction of distortion aberration in imaging systems by using a microlens array,” Optics Communications, vol. 283, pp. 2798-2802, 2010. M. J. Chen, X. Chu, C. Y. Wu, and Y. Jiang, “Research on Structural Design and Optimization of Artificial Optical Compound Eye,” Materials Science Forum, vol. 697-698, pp. 817-821, 2012. A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering, vol. 39, pp. 2171-2176, 2000. P. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, vol. 6, pp. 617-636, 1997. F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik, vol. 113, pp. 391-404, 2002. K. A. Heyries and C. L. Hansen, “Parylene C coating for high-performance replica molding,” Lab Chip, vol. 11, pp. 4122-4125, 2011. M. Zhang, J. Wu, L. Wang, K. Xiao and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip, vol. 10, pp. 1199-1203, 2010. J.-K. Chen, F.-H. Ko, K.-F. Hsieh, C.-T. Chou, and F.-C. Chang, “Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 22, no. 6, pp. 3233-3241, 2004. Q. He, J. Liu, B. Yang, Y. Dong, and C. Yang, “Fabrication and Characterization of Biologically Inspired Curved-Surface Artificial Compound Eyes,” Journal of Microelectromechanical Systems, vol. 22, pp. 4-6, 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60558 | - |
| dc.description.abstract | 昆蟲的複眼是由幾千到幾萬個小眼所組合而成,其優點為能提供廣大的視角以及偵測高速的動作。因此,和傳統平面式光學元件相比,複眼式光學元件被應用在廣視角成像系統中,能大幅減少透鏡數目以及系統體積。然而傳統製程技術皆屬於平面製程,使得在曲面上製作微結構變得困難。在本篇論文中,我們提出一種在球面上製作微透鏡陣列的方法。利用熱回流製造緊密排列的微透鏡陣列,再用多次翻模技術將平面轉製成球面,製程的中間產物包含了凹面微透鏡陣列的曲面模具,這使得曲面型微透鏡陣列可以很容易地被大量複製。我們使用聚二甲基矽氧烷做為模具和透鏡的材料,由於液態的聚二甲基矽氧烷具有良好的覆蓋性,固化後具有彈性且對可見光波段的穿透度高,因此很適合用作微透鏡陣列的複製材料。實驗結果對曲面型微透鏡陣列進行分析,並和其他不同製程方法相比較。這種方法提供了簡單且低成本的曲面微透鏡製程。 | zh_TW |
| dc.description.abstract | An insect’s compound eye may consist of thousands of ommatidia. It allows wide field of view and can detect fast movement. Therefore, compared to traditional planar optical devices, compound-eye structured optical elements can reduce components and volume when being applied to compact imaging system. However, fabrication process for microstructures on curvilinear surface has a lot of difficulties since traditional fabrication techniques are planar. In this thesis, we present a method to fabricate microlenses on spherical surface. Microlenses with high fill factor were formed by thermal reflow technique, followed by multiple replication processes to transfer the microlenses from planar substrate onto spherical surface. During the process, we made a curved mold with concave microlenses, which allowed this method to be duplicable easily. Polydimethylsiloxane (PDMS) elastomer was employed as the material of both microlenses and mold. Because of the good coverability of liquid PDMS and the flexiblility and transparency for visible light after curing, PDMS is suitable for the replication process. The experimental results of curved microlens arrays were analyzed and compared with the other fabrication methods. This method provides a simple and low-cost fabrication process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:21:36Z (GMT). No. of bitstreams: 1 ntu-102-R00941040-1.pdf: 4581067 bytes, checksum: 2bdbf8ed623bb957b9f8ab6f7de1e31e (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
致謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Review of curved microlens array fabrication technologies 1 1.1.1 Reconfigurable microtemplating [10] 4 1.1.2 Laser lithographic fabrication [13] 5 1.1.3 Bridge-structured microlens arrays 6 1.1.4 3D micro projection [16] 7 1.1.5 Femtosecond (fs)-laser microfabrication [18] 8 1.2 Applications of curved microlens array 11 1.2.1 Curved artificial compound eye 11 1.2.2 Bionic contact lens 12 1.2.3 Bio-inspired compact camera [22] 13 Chapter 2 Aberrations 16 2.1 Chromatic aberration 19 2.2 Seidel aberrations 20 2.2.1 Spherical aberration 21 2.2.2 Coma 22 2.2.3 Astigmatism 23 2.2.4 Field curvature 24 2.2.5 Distortion 25 2.3 Aberration correction by microlens array 26 2.3.1 Reduction of distortion [27] 26 2.3.2 Reduction of spherical aberration [28] 28 Chapter 3 Working principle and fabrication process 30 3.1 Thermal reflow 30 3.2 Materials 35 3.2.1 AZ P4620 36 3.2.2 Polydimethylsiloxane 37 3.3 Fabrication process 38 3.3.1 Photoresist MLA 38 3.3.2 Planar PDMS MLA 38 3.3.3 Surface treatment 40 3.3.4 Curved PDMS MLA 41 Chapter 4 Experimental results 43 4.1 Photoresist MLAs 43 4.2 Planar PDMS MLAs 47 4.3 Curved PDMS MLAs 55 Chapter 5 Conclusion 70 REFERENCE 72 | |
| dc.language.iso | en | |
| dc.subject | 微透鏡陣列 | zh_TW |
| dc.subject | 翻模製程 | zh_TW |
| dc.subject | 視角 | zh_TW |
| dc.subject | 球面 | zh_TW |
| dc.subject | 人工複眼 | zh_TW |
| dc.subject | replication process | en |
| dc.subject | field of view | en |
| dc.subject | artificial compound eye | en |
| dc.subject | spherical surface | en |
| dc.subject | microlens array | en |
| dc.title | 在球面上應用多次翻模製造之聚二甲基矽氧烷微透鏡陣列 | zh_TW |
| dc.title | Fabrication of Polydimethylsiloxane microlens array on spherical surface using multi-replication process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡永傑(Wing-Kit Choi),黃鼎偉(Ding-Wei Huang) | |
| dc.subject.keyword | 球面,微透鏡陣列,人工複眼,視角,翻模製程, | zh_TW |
| dc.subject.keyword | spherical surface,microlens array,artificial compound eye,field of view,replication process, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
