Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60555
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李達源(Dar-Yuan Lee)
dc.contributor.authorPei-Rung Wuen
dc.contributor.author吳佩蓉zh_TW
dc.date.accessioned2021-06-16T10:21:30Z-
dc.date.available2016-08-23
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation行政院農業委員會農糧署,2012,肥料檢驗項目及檢驗方法。
吳懿芳。2009。土壤溶液中砷物種分佈及轉變與其對水稻之毒害。國立臺灣大學農業化學系碩士論文。
林浩潭。1999。砷與有機物交互作用之探討。國立中興大學土壤環境科學系博士論文。
林聖淇、趙方傑、黃文達、徐新貴、姚佩萱、張尊國。2008。關渡平原水田土壤砷物種與水稻植體濃度關係探討。農業工程學報,第54 卷第2 期。
張尊國,2007,臺北市農地土壤重金屬含量調查及查證計畫,台北市政府環境保護局。
陳仁炫。2001。有機栽培的施用策略。有機農業土壤肥料管理研習班講義。第77至90頁。財團法人慈心有機發展委員會編印。
陳仁炫、鄒裕民。2008。土壤與肥料分析手冊 (一),土壤化學性質分析。中華土壤肥料學會,行政院農委會農糧署。
陳梅桂。2012。土壤性質與水稻品種對鐵膜的生成與水稻幼苗吸收砷之影響。國立臺灣大學農業化學系碩士論文。
歐淑蒖。2003。評估四種有機質材在不同性質土壤的氮與磷之釋放效應。國立中興大學土壤環境科學系碩士論文。
賴喜美、蘇南維。2011。生物材料分析實驗。國立台灣大學農業化學系。
AACC. 1995. Approved Method of the American Association of Cereal Chemist, 9th edn., St.Paul, MN: AACC Inc.
Abedin, M.J., M.S. Cresser, A.A. Meharg, J. Feldmann, and J. Cotter-Howells. 2002. Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ. Sci. Technol. 36: 962–968.
Amina, L.R., S.R. Mandal, N.M. Hassan, J. Murimboh, C.L. Chakrabarti, M.H. Back, D.C. Gregoire, and W.H. Schroeder. 1999. Effect of metal/ fulvic acid mole ratios on the binding of Ni(II), Pb(II), Cu(II), Cd(II), and Al(III) by two well-characterized fulvic acids in aqueous model solutions. Anal. Chim. Acta 402: 211–221.
Ascar, L., I. Ahumada, and P. Richter. 2008. Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72: 1548–1552.
Asghar, M., and Y. Kanehiro. 1980. Effects of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe, and Mn. Trop. Agric. 57: 245–258.
Azcue, J.M., and J.O. Niragu. 1994. Arsenic: historical perspectives. p. 1–15. Niragu JO Arsenic in the Environment, Part I, Cycling and Characterization, John Wiley & Sons, New York Ed. Book.
Ben-Dor, E., and A. Banin. 1989. Determination of organic matter content in arid-zone soils using a simple loss-on-ignition method. Commun. Soil Sci. Plant Anal. 20: 5–1695.
Bhumbla, D.K., and R.F. Keefler. 1994. Arsenic mobilization and bioavailability in soils, pp. 51–82 Niragu JO Arsenic in the Environment, Part I, Cycling and Characterization, John Wiley & Sons, New York Ed. Book.
Biswas, B.K., R.H. Loeppert, M.B. Hossain, G.K.M.M. Rahman, M. Jahiruddin, M.A.M. Miah, T.M. Farid, G.M. panaullah, C.M. Meisner, and J.M. Duxbury. 2011. Impact of soil oxides on retension of arsenic in Bangladesh rice-producing soils. Proceedings of 7th International Conference on the Biogeochemistry of Trace Elements, Uppasala’03.
Bleeker, P.M., H.W. Hakvoort, M. Bliek, E. Souer, and H. Schat. 2006. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J. 45: 917–929.
Bouyoucos, G. J.. 1936. Directions for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42: 225–228.
Brannon, J.R., W.H. Patrick. Jr. 1987. Fixation, transformation, and mobilization of arsenic in sediments. Environ. Sci. Technol. 21: 450–459.
Bremner, J.M., and C.S. Mulvaney. 1982. Methods of soil analysis, part 2 chemical and microbiological properties. 595–624.
Cai, Y., M. Georgiadis, and J. W. Fourqurean. 2000. Determination of arsenic in seagrass using inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 55: 1411–1422.
Carey, A.M., G.J. Norton, C. Deacon, K.G. Scheckel, E. Lombi, T. Punshon, M.L. Guerinot, A. Lanzirotti, M. Newville, and Y. Choi. 2011. Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol. 192: 87–98.
Chan, P.C., and J. Huff. 1997. Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ. Carcinog. Ecotoxicol. Rev. Part C 15: 83–122.
Chen, S. L., S. J. Yeh, M. H. Yang, and T. H. Lin. 1995. Trace-element concentration and arsenic speciation in the well water of a Taiwan area with endemic black foot disease. Biol. Trace Elem. Res. 48: 263–274.
Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharq. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165: 91–97.
Chiou, H.Y., Y.M. Hsueh, K.F. Liaw, S.F. Hornq, M.H. Chianq, Y.S. Pu, J.S. Lin, C.H. Huang, and C.J. Chen. 1995. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 55: 1296–1300.
Cullen, W.R., and K.J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89: 713–764.
Das, D.K., P. Sur, and K. Das. 2008. Mobilization of arsenic in soils and in rice (Oryza sativa L.) plants affected by organic matter and zinc application in irrigation water contaminated with arsenic. Plant Soil Environ. 54: 30–37.
Dhar, R.K., B.K. Biswas, G. Samanta, B.K. Mandal, D. Chakraborti, and S. Roy. 1997. Groundwater arsenic calamity in Bangladesh. Curr. Sci. India 73: 48–59.
Duan, G.L., Y. Zhou, Y.P. Tong, R. Mukhopadhyay, B.P. Rosen, and Y.G. Zhu. 2007. A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 174: 311–321.
Dubois, M., K.A. Gilles, J.K. Hamilton, A.P. Robers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.
Fendorf. S, M.J. Herbel, K.J. Tufano, and B.D. Kocar. 2008. Biogeochemical processes controlling the cycling of arsenic in soils and sediments. p. 313–338. In Biophysico-Chemical Processes of Heavy Metals and Metalloids in Soil Environments, ed. A Violante, P.M. Huang, G.M. Gadd. Hoboken, NJ:Wiley.
Ferguson, J.F., and J. Gavis. 1972. A review of the arsenic cycle in natural waters. Water Res. 6: 1259–1274.
Filella, M., J. Buffle, and H.P.V. Leeuwen. 1990. Effect of physicochemical heterogeneity of natural complexants. Part I. Voltammetry of labile metal–fulvic complexes. Anal. Chim. Acta 232: 209–223.
Fitz, W.J., and W.W. Wenzel. 2002. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J. Biotechnol. 99: 259–278.
Frost, R.R., and R.A. Griffin. 1977. Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci. Soc. Am. J. 41: 53–57.
Gareth, J. N., E. E. Adomako , C. M. Deacon, A. M. Carey , A. H. Price and A. A. Meharg. 2013. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Environ. Pollut. 177: 38–47.
Ghosh, A.K. and P. Bhattacharyya. 2004. Arsenate sorption by reduced and reoxidised rice soils under the influence of organic matter amendments. Environ. Geol. 45: 1010–1016.
Grafe, M., M.J. Eick, P.R. Grossl, and A.M. Saunders. 2002. Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J. Environ. Qual. 31: 1115–1123.
Hossain, M.B., M. Jahiruddin, R.H. Loeppert, G.M. Panaullah, M.R. Islam, and J.M. Duxbury. 2009. The effect of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil. 317: 167–176.
Hsu, K.H., L.L. Hsieh, H.Y. Chiou, C.J. Lee., C.Y. Wang, T.H. Lee, and C.J. Chen. 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin J. Public. Health, Vol. 18 (suppl. 1), p. 124–133.
Hsueh, Y.M., Y.L. Huang, C.C. Huang, W.L. Wu, H.M. Chen, M.H. Yang, L.C. Lue, and C.J. Chen. 1998. Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J. Toxicol. Env. Heal. A. 54: 431–444.
Huang, Y.Z., X.C. Qian, G.Q. Wang, Y.L. Gu, S.Z. Wang, and Z.H. Cheng. 1992. Syndrome of endemic arsenism and fluorosis: A clinical study. Chinese Med. J. 105: 586–590.
Huang, H., Y. Jia, G.X. Sun, and Y.G. Zhu. 2012. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters. Environ. Sci. Technol. 46: 2163–2168.
Huysmans, K.D., and W.T. Frankenberger. 1991. Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci. Total Environ. 105: 13–28.
Imamul Huq S. M., and R. Naidu. 2005. Arsenic in ground water and contamination of the food chain: Bangladesh scenario. p. 95–101. In: Natural Arsenic in Groundwater: Occurrence, Remediation and Management (Bundschuh J, Bhattacharya P, Chandrasekharam D, eds.), Balkema, New York.
Jackson, M.L., C.H. Lim and L.W. Zelazny. 1986. Oxides, hydroxides, and aluminosilicates. p. 101–150. In A. Klute (ed.) Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Jain, C.K., and I. Ali. 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34: 4304–4312.
Li, R.Y., Y. Ago, W.J. Liu, N. Mitani, J. Feldmann, S.P. McGrath, J.F. Ma, F.J. Zhao. 2009. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol. 150: 2071–2080.
Lin, H.T., M.C. Wang, and G.C. Li. 2004. Complexation of arsenate with humic substance in water extract of compost. Chemosphere 56: 1105–1112.
Lin, T.H., Y.L. Huang, and M.Y. Wang. 1998. Arsenic species in drinking water, hair, fingernails, and urine of patients with Blackfoot disease. J. Toxicol. Env. Heal. A. 53: 85–93.
Liu, W.J., Y.G. Zhu, and F.A. Smith. 2005. Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil. 277: 127–138.
Liu, W.J., Y.G. Zhu, Y. Hu, P.N. Williams, A.G. Gault, A.A. Meharq, J.M. Charnock, and F.A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L). Environ. Sci. Technol. 40: 5730–5736.
Liu, W.J., Y.G. Zhu, F.A. Smith. 2004. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol. 162: 481–488.
Liu, W.J., B.A. Wood, A. Raab, S.P. McGrath, F.J. Zhao, and J. Feldmann. 2010. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis thaliana. Plant Physiol. 152: 2211–2221.
Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture?. New Phytol. 162: 481–488.
Ma, J.F., N. Yamaji, N. Mitani, X.Y. Xu, Y.H. Su, S.P. McGrath, and F.J. Zhao. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. P. Natl. Acad. Sci. USA. 105: 9931–9935.
Mahimairaja, S., N.S. Bolan, D.C. Adriano, and B. Robinson. 2005. Arsenic contamination and its risk management in complex environmental settings. Adv. Agron. 86: 1–82.
Masscheleyn, P.H., R.D. Delaune, and W.H. Patrick. 1991. Effect of redox potential and pH on arsenic peciation and solubility in a contaminated soil. Environ. Sci.Technol. 25: 1414–1419.
Masscheleyn, P. H., R.D. Delaune, and W.H. Partrick, Jr. 1991. Arsenic and selenium chemistry as affected by sediment redox potential and pH. J. Environ. Qual. 20: 522–527.
Mckeague, J.A., and J.H. Day. 1966. Dithionite and oxalate extractable Fe ans Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 45: 49–62.
Mclean, E.O. 1982. Soil pH and lime requirement. p. 119–224. In A. L. Page et al. (ed.) Methods of soil analysis, Part2. 2nd ed. ASA and SSSA, Madison, Wi.
Meharg, A.A., and M. Rahman. 2003. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 37: 229–234.
Mehra, O.P., and M.L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In Clays and clay minerals. Proc. 7th Natl. Congr. Pergamon, London.
Meng, X.G., S.B. Bang, and G.P. Korfiatis. 2000. Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 34: 1255–1261.
Munch, J.C., T. Hillebrand, and J.C.G. Ottow. 1978. Transformations in the Feo/Fed ratio of pedogenic iron oxides affected by iron-reducing bacteria. Can. J. Soil Sci. 58: 475–486.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon, and organic matter. p. 539–579. In A. L. Page et al. (ed.) Methods of soil analysis, Part2. 2nd ed. ASA and SSSA, Madison, WI.
Parkinson, A. 1996. Biotransformation of xenobiotics. p. 113–186. In: Klaassen CD, AmdurMO,Doull J, eds. Casarett and Doull’s Toxicology – The Basic Science of Poisons. New York: McGraw-Hill.
Rahaman, S., A. C. Sinha, and D. Mukhopadhyay. 2011. Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J. Environ. Sci. 23: 633–639.
Redman, A.D., D. Macalady, and D. Ahmann. 2002. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36: 2889–2896.
Rittle, K. A., and J. I. Drever. 1995. Precipitation of arsenic during bacterial sulphate reduction. Geomicrobiol. J. 13: 1–11.
Rochette, E.A., B.C. Bostick, G.C. Li, S. Fendorf. 2000. Kinetics of arsenate reduction by dissolved sulfide. Environ. Sci. Technol. 34: 4714–4720.
Sahrawat, K.L. 2005. Fertility and organic matter in submerged rice soils. Curr. Sci. India 88: 735–739.
Schnitzer, M. and S.U. khan. 1972. Humic substances in the environment. Marcel Dekkar Inc., New York, N. Y. 327.
Scott, D.T., D.M. McKnight, B.E.L. Harris, S.E. Kolesar, and D.R. Loveley. 1998. Quinone moieties cat as electron acceptors in the eduction of humic substances by humic-reducing microorganisms. Environ. Sci. Technol. 32: 2984–2989.
Seyfferth, A.L., S.M. Webb, J.C. Andrews, and S. Fendorf. 2010. Arsenic localization, speciation and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ. Sci. Technol. 44: 8108–8113.
Sharma, P., M. Rolle, B. Kocar, S. Fendorf, and A. Kappler. 2011. Influence of Natural Organic Matter on As Transport and Retention. Environ. Sci. Technol. 45: 546–553.
Smith, E., R. Naidu, and A.M. Alston. 1998. Arsenic in the soil environment: a review. Adv. Agron. 64: 149–195.
Somenahally, A.C., E.B. Hollister, W. Yan, T.J. Gentry, and R.H. Loeppert. 2011. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ. Sci. Technol. 45: 8328–8335
Stevenson, F.J. 1986. Cycle of soil. Carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sonc, Inc., New York.
Stroud, J.L., G.J. Norton, M.R. Islam, T. Dasgupta, R.P. White, A.H. Price, A.A. Meharg, S.P. McGrath, and F.J. Zhao. 2011. The dynamics of arsenic in four paddy fields in the Bengal delta. Environ. Pollut. 159: 947–953.
Stryer, L. 1981. Biochemistry. New York: W.H. Freeman.
Styblo, M., L.M.D. Razo, L. Vega, D.R. Germolec, E.L. LeCluyse, G.A. Hamilton, W. Reed, C. Wang, W.R. Cullen, and D.J. Thomas. 2000 Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch. Toxicol. 74: 289–299.
Takahashi, Y., R. Minamikawa, K.H. Hattori, K. Kurishima, N. Kihou, and K. Yuita. 2004. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ. Sci. Technol. 38: 1038–1044.
Tamaki, S., and Jr. Frankenberger. 1992. Environmental biochemistry of arsenic. Rev. Environ. Conta. T. 124: 79–110.
Tate, K.R., and B.K.G. Theng. 1980. Organic matter and its interactions with inorganic soil constituents. p. 225–249 in: Soils with Variable Charge (B.K.G. Theng, editor). New Zealand Society of Soil Science, Lower Hutt.
Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu, and C.J. Chen. 2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp. 108: 847–851.
Wang, S., and C.N. Mulligan. 2006. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ. Geochem. Health 28: 197–214.
Wang, S., and C.N. Mulligan. 2004 Arsenic in Canada. p. 1–8. In Proceedings of the 57th Canadian Geotechnical Conference & 5th Joint- IAH-CNS/CGS Conference, Session ID, Environmental Geotechnology 1. October. Quebec, Canada.
Wang, T.G., and J.H. Peverly. 1999. Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Sci. Soc. Am. J. 63: 247–252.
WHO. 2001. Arsenic and arsenic compounds. Environmental health criteria, vol 224. World Health Organization, Geneva.
Williams, P.N., H. Zhang, W. Davison, A.A. Meharg, M.H. Sumon, G.J. Norton, H. Brammer, and M.R. Islam. 2011. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ. Sci. Technol. 45: 6080–6087.
World Health Organ. 1989. Toxicological evaluation of certain food additives and contaminants. WHO Food Addit. Ser. No. 24, Geneva: WHO.
Wu, C., Z.H. Ye, H. Li, S.C. Wu, D. Deng, Y.G. Zhu, and M.H. Wong. 2012. Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J. Exp. Bot. 63: 2961–2970.
Xu, H., B. Allard, and A. Grimvall. 1988 Influence of pH and organic substance on the adsorption of As(V) on geological materials. Water Air Soil Pollut. 40: 293–305.
Xu, X.Y., S.P. McGrath, A.A. Meharg, and F.J. Zhao. 2008. Growing rice aerobically decreases arsenic accumulation. Environ. Sci. Technol. 42: 5574–5579.
Yamaguchi, N., T. Nakamura, D. Dong, Y. Takahashi, S. Amachi, and T. Makino. 2011. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83: 925–932.
Ye, Z.H., A.J.M. Baker, M.H. Wang, and A.J. Willis. 1998. Zinc, lead and cadmium accumulation an tolerance inTypha latifolia as affected by iron plaque on the root surface. Aquat. Bot. 61: 55–67.
Zhao, F.J., S.P. McGrath, and A.A. Meharg. 2010. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant Biol. 61: 535–559.
Zhao, F.J., J.F. Ma, A.A. Meharg, and S.P. McGrath. 2009. Arsenic uptake and metabolism in plants. New Phytol. 181: 777–794.
Zheng, M.Z., C. Cai, Y. Hu, G.X. Sun, P.N. Williams, H.J. Cui, G. Li, F.J. Zhao, and Y.G. Zhu. 2011. Spatial distribution of arsenic and temporal variation of its concentration in rice. New Phytol. 189: 200–209.
Zheng, R.L., G.X. Sun, and Y.G. Zhu. 2013. Effects of microbial processes on the fate of arsenic in paddy soil. Chin. Sci. Bull. 58: 186–193.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60555-
dc.description.abstract前人研究指出,有機質會影響砷在土壤中的移動性及有效性,而可能提高水稻植體對於砷之吸收,並透過食物鏈使人類健康受到危害,但有機質和砷在土壤中之關係尚未清楚。因此,本研究目的為探討施用不同性質的有機質材於砷污染土壤中,其影響砷在土壤中的有效性,及水稻幼苗中累積砷含量之差異。本試驗以不同性質之平鎮系 (Pc) 與將軍系 (Cf) 兩種農地土壤,添加 0 及 150 mg As (Ⅴ) kg-1,另取兩個不同砷濃度之關渡土壤表土作為供試土壤。分別添加 0、1 及 4 % 之大豆粕 (SB)、蔗渣堆肥 (SC) 及牛糞堆肥 (CD) 三種有機質材於供試土壤中,在田間容水量下平衡 21 天後進行浸水孵育之批次試驗與水稻幼苗盆栽試驗。由盆栽試驗結果顯示,施用有機質材至砷污染土壤中會提高水稻對砷之吸收,雖然鐵膜生成量增加,且鐵膜上的鐵及砷具顯著的正相關 (P < 0.001),推測鐵膜會阻隔砷進入水稻植體,但整體而言,水稻植體中的砷濃度仍增加。1% SB 施用於砷污染之 Pc 及 Gd 土壤,皆顯著提高水稻地上部之砷濃度,但水稻生長並未受到抑制,反而提高水稻幼苗之生質量。除此之外,施用 4 % SB 處理在 Pc 土壤中造成肥傷;砷污染之 Cf 土壤之水稻幼苗則受砷毒害而死亡。存在溶液相中的砷易被水稻幼苗吸收,由浸水孵育的結果顯示,施用三種有機質材至試驗土壤後,土壤溶液中的砷濃度提高,而影響水稻幼苗對砷之累積含量,但不同土壤及有機質種類結果相異。有機質材的添加可提高土壤溶液中可溶性有機碳 (DOC) 的濃度,且三種土壤皆以 SB 處理最為顯著,土壤溶液中 DOC 及砷濃度具顯著正相關,因此推測 DOC 可與砷競爭土壤吸附位置或和砷形成複合物所致。此外,添加有機質亦會導致土壤溶液 pH 值上升及土壤呈還原境況,這些綜合結果造成土壤溶液中砷濃度增加,其中皆以 CD 處理之影響較不顯著。Cf 土壤 pH 值高、黏粒含量低及無定型鐵鋁氧化物含量低,對於砷的吸持能力較弱,導致 4 % SB 處理在孵育試驗期間的土壤溶液中砷濃度高達 15 mg L-1。由以上結果得知,施用有機質材至砷污染土壤中,須謹慎評估有機質材及土壤特性,應避免施用易分解之有機質材與避免施用在高 pH 值或砷吸附容量低之土壤。zh_TW
dc.description.abstractPrevious studies have shown that organic matter (OM) can affect the arsenic (As) mobilization and bioavailability in soil as this may lead to the increase of As uptake into rice plants and pose human health risks since the As-exposure pathway via food chain. But the relationship between organic matter and As in the soils are not clear. Therefore, the aim of this study is to evaluate the effect of various organic amendments on As availability in As-contaminated soils and accumulation in rice seedlings. Two different properties of agricultural soils (Pinchen soil, Pc, and Chengchung soil, Cf) which were spiked with 0 and 150 mg As(V) kg-1 respectively and two Guandu soils (Gd) with low and high levels of As concentrations were used in this study. Soybean meal (SB), cattle-dung compost (CD), and sugarcane dregs compost (SC) were added into soils at the application rates of 0, 1, and 4 % (dry weight bases). The soils equilibrated at field water capacity condition for 21 days, and then flooding incubation and pot experiments for growing rice seedlings were performed.
The results showed that the formation of iron plaque were increased, and there was a significantly positive correlation (P<0.001) between the amounts of As and Fe in iron plaque, which might sequestrate As. However, the application of organic amendments increased As uptake by rice seedlings. The use of organic amendments enhanced As accumulation in rice plant whereas shoot biomass of rice seedlings grown in As-contaminated Pc and Gd soils treated with 1% SB was significantly increased. In addition, the rice seedlings in both non-added As(V) and As-contaminated Pc soils died which amended with 4 % SB treatment, and it was probably due to fertilizer burn; and the rice seedlings under additions of 4 % SB and SC in As-contaminated Cf soils were dead but not found in non-added As(V) Cf soils, it was subjected to serious As toxicity.
The proportion of As in solution phase is easily absorbed by rice seedlings. The concentrations of As in soil solutions were increased by the applications of organic amendments, and thus As uptake by rice seedlings was enhanced, while the extent of increase varied depending on soils and organic amendments. The application of organic amendments will increase the DOC concentration in soil solutions while the extent of increase was the highest under the SB treatment. The DOC concentrations were significantly correlated to the As concentrations in soil solution, presumably that DOC can compete with As for adsorption sites at soil surface or forming soluble OM-As complexes. On the other hand, the increase of soil pH and the decrease of the soil redox potential (Eh) were also observed. The variation of soil characteristics resulted in difference of elevating As release to the soil solution amended with organic amendments, and the lowest effect were found under the CD treatments. Cf soil which has high pH and low levels of clay content and iron and aluminum oxides content was found to have low affinity for As and thus resulting in As concentration in soil solutions of 4% SB treatment was higher than 15 mg L-1.
In conclusion, the addition of organic amendments, especially for more decomposable organic amendments could increase the As release and consequent As uptake by rice. This effect could be more obvious in soils with high pH value and low As sorption ability which was resulting in the increase of As toxicity of rice seedlings. Therefore, it is important to evaluate the properties of organic amendments and soils carefully while adding organic materials into As-enriched soils.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:21:30Z (GMT). No. of bitstreams: 1
ntu-102-R00623013-1.pdf: 2487051 bytes, checksum: bd521d4331be23566012835ff9a4e5bc (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract III
表目錄 VIII
圖目錄 X
第一章 緒論 1
1.1 砷 1
1.2 砷的來源及影響 3
1.2.1 砷的來源 3
1.2.2 砷的毒性 4
1.2.3 砷對植物的影響 4
1.2.4 砷對人類的影響 5
1.3 土壤中的砷 6
1.4 有機質材施用對土壤中砷之影響 10
1.5 有機質材影響水稻對砷之吸收 16
1.6 研究動機與目的 19
第二章 材料與方法 21
2.1 供試材料 21
2.1.1 試驗之土壤 21
2.1.2 試驗之有機質材 27
2.2 試驗方法與步驟 32
2.2.1 兩種供試土壤添加 As(Ⅴ) 之處理 32
2.2.2 質材施用量 32
2.2.3 試驗步驟 32
2.3 不同有機質材施用下試驗土壤之浸水孵育 34
2.3.1 土壤浸水孵育處理 34
2.3.2 測定浸水孵育土壤溶液之砷、砷物種、可溶性有機碳 (DOC)、鐵和磷濃度 35
2.4 水稻幼苗生長之盆栽試驗 36
2.4.1 供試水稻品種 36
2.4.2 試驗土壤前處理 36
2.4.3 秧苗育苗 36
2.4.4 盆栽試驗 37
2.4.5 盆栽試驗之氧化還原測定 37
2.4.6 根部鐵膜之鐵、磷和砷含量測定 38
2.4.7 植體分解 39
2.5 統計分析 40
2.6 藥品製備方法 41
第三章 結果與討論 43
3.1 供試土壤及有機質材之理化性質 43
3.1.1 土壤之理化性質 43
3.1.2 有機質材之理化性質 46
3.2 水稻幼苗盆栽試驗之生長情形 49
3.3 水稻幼苗植體中砷之濃度 55
3.4 土壤浸水孵育期間之土壤溶液中砷濃度的變化 58
3.5 土壤浸水孵育期間之土壤溶液中 pH 值的變化 63
3.6 盆栽試驗 50 天期間之氧化還原電位的變化 66
3.7 土壤浸水孵育期間之土壤溶液中鐵濃度的變化 70
3.8 土壤浸水孵育期間之土壤溶液中可溶性有機碳 (DOC) 濃度的變化 74
3.9 添加 As(V) 之平鎮及將軍土壤與高砷濃度之關渡土壤中,經浸水 50 天後,其土壤溶液中砷物種之分布 81
3.10 盆栽試驗中鐵膜對水稻吸收砷之影響 87
3.10.1 以 DCB 溶液萃取之水稻根部鐵膜生成量 87
3.10.2 鐵膜與其吸持砷濃度之相關性 90
3.10.3 鐵膜對水稻幼苗植體中砷總吸收量之影響 93
第四章 結論 98
第五章 參考文獻 99
第六章 附錄 110
dc.language.isozh-TW
dc.subject砷zh_TW
dc.subject有機質材zh_TW
dc.subject可溶性有機碳zh_TW
dc.subject水稻zh_TW
dc.subjectarsenicen
dc.subjectorganic amendmenten
dc.subjectdissolved organic carbonen
dc.subjectriceen
dc.title添加不同有機質材至砷污染土壤中對土壤溶液砷濃度及水稻幼苗砷吸收量之影響zh_TW
dc.titleThe Effect of Organic Amendments on Arsenic Concentration in Soil Solution and Uptake by Rice Seedlings in As-Contaminated Soilsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳尊賢(Zueng-Sang Chen),陳仁炫(Jen-Hshuan Chen),王尚禮(Shan-Li Wang),莊愷瑋(Kai-Wei Juang)
dc.subject.keyword砷,有機質材,可溶性有機碳,水稻,zh_TW
dc.subject.keywordarsenic,organic amendment,dissolved organic carbon,rice,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
Appears in Collections:農業化學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.43 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved