請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60553完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃良得(Lean-Teik Ng) | |
| dc.contributor.author | Yu-Hsiang Tung | en |
| dc.contributor.author | 董育翔 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:21:26Z | - |
| dc.date.available | 2013-08-28 | |
| dc.date.copyright | 2013-08-28 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 邱再發、黃文良。1970。水稻氮肥施肥技術之研究(一報)氮肥晚期施用對水稻產量及養分吸收之影響。中華農業研究 19: 26-41。
何念祖、孟賜福。1987。植物營養原理。上海科學技術出版社,上海,中國。 黃紹華。2011。臺灣產稻米的機能性成分研究。臺灣大學農業化學系碩士論文。台北,台灣。 謝元德。2005。農田地力增進措施,臺南農業改良場技術專刊,No. 132 鍾仁賜、鄧雯玉。2003。環境因子對藥用植物生長與有效成分之影響。藥用植物之栽培與利用研討會論文集,pp. 1-13。 Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Plant Biol. 55: 373-399. Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396. Asghar, M. and Y. Kanehiro. 1980. Effects of sugarcane trash and pineapple residue on soil pH, redox potential, extractable Al, Fe and Mn. Trop. Agric. 57: 245-258. Ashraf, M. and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166: 3-16. Athar, H.R., A. Khan, and M. Ashraf. 2008. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ. Exp. Bot. 63: 224-231. Bailly, C. 2004. Active oxygen species and antioxidants in seed biology. Seed Sci. Res 14: 93-107. Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soil. J. Soil Sci. 15: 84-92. Beauchamp, C. O. and I. Fridovich. 1971. Superoxide dismutase. Improved assays and an assay applicable to acrylamide gel. Anal. Biochem. 44: 276-287. Bergman, C. J. and Z. Xu. 2003. Genotype and environment effects on tocopherol, tocotrienol, and γ-oryzanol contents of southern U.S. rice. Cereal Chem. 80: 446-449. Blokhin, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91: 179-194. Bremner, J. M. 1965. Total nitrogen. In Methods of Soil Analysis, Part 2. C. A. Black (ed.). pp. 1149-1178. ASA, Madison, USA. Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties 2nd edition, A. L. Page (ed.). pp. 621-622. Academic Press, New York, USA. Britz, S. J., P. V. V. Prasad, R. A. Moreau, L. H. Allen, JR. D. F. Kremer, and K. J. Boote. 2007. Influence of growth temperature on the amounts of tocopherols, tocotrienols, and γ-oryzanol in brown rice. J. Agric. Food Chem. 55: 7559-7565. Campbell, N. A. and J. B. Reece. 2002. Photosynthesis. Biol. 10: 176-186. Cela, J., L. Arrom, and S. Munnѐ-Bosch. 2009a. Diurnal changes in photosystem II photochemistry, photoprotective compounds and stress-related phytohormones in the CAM plant, Aptenia cordifolia. Plant Sci. 177: 404-410. Chen C.W. and H. H. Cheng. 2006. A rice bran oil diet increases LDL-receptor and HMG-CoA reductase mRNA expressions and insulin sensitivity in rats with streptozotocin/nicotinamide-induced type 2 diabetes. J. Nutr. 136: 1472-1476. Collakova E. and D. DellaPenna. 2003. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol. 133: 930-940. Conte, C., A. Floridi, C. Aisa, M. Piroddi, and F. Galli. 2004. Gamma-tocotrienol metabolism and antiproliferative effect in prostate cancer cells. Ann. N. Y. Acad. Sci. 1031: 391-394. Das, S., I. Lekli, M. Das, G. Szabo, J. Varadi, and B. Juhasz. 2008. Cardioprotection with palm oil tocotrienols: comparision of different isomers. Am. J. Physiol. Heart Circ. Physiol. 294: 970-978. Devaraj, S. and I. Jialal. 2000. Low-density lipoprotein postsecretory modification, monocyte function, and circulating adhesion molecules in type 2 diabetic patients with and without macrovascular complications: the effect of α-tocopherol supplementation. Circulation 102: 191-196. Dionisio-Sese, M. L. and S. Tobita. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135: 1-9. Falk, J. and S. Munne’-Bosch. 2010. Tocochromanol functions in plants: antioxidation and beyond. J. Exp. Bot. 61: 1549-1566. Fernandez-Escobar, R. and M. A. Sanchez-Zamora. 2002. The effect of nitrogen over fertilization on olive tree growth and oil quality. Acta Hortic. 586: 429-431. Gapper, C. and L. Dolan. 2006. Control of plant development by reactive oxygen species. Plant Physiol. 141: 341–345. Gill, S. S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930. Goffman, F. D. and C. J. Bergman. 2004. Rice kernel phenolic content and its relationship with antiradical efficiency. J. Sci. Food Agri. 84: 1235-1240. Heath, R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198. Hernandez, J. A. and M. S. Almansa. 2002. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol. Plant 115: 251-257. Hincha, D. K. 2008. Effects of α-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Lett. 582: 3687–3692. Hollander-Czytko, H., J. Grabowski, I. Sandorf, K. Weckermann, and E. W. Weiler. 2005. Tocopherol content and activities of tyrosine aminotransferase and cysteine lyase in Arabidopsis under stress conditions. J. Plant Physiol. 162: 767-770. Huang, S. H. and L. T. Ng. 2011. An improved high-performance liquid chromatographic method for simultaneous determination of tocopherols, tocotrienols and γ-oryzanol in rice. J. Chromatogr. A. 1218: 4709-4713. Ibrahim, M. H., H. Z. E. Jaafar, A. Rahmat, and Z. A. Rahman. Involvement of nitrogen on flavonoids, glutathione, anthocyanin, ascorbic acid and antioxidant activities of Malaysian medicinal plant Labisia pumila Blume (Kacip Fatimah). Int. J. Mol. Sci. 13: 393-408. Islam, M. S., T. Murata, M. Fujisawa, R. Nagasaka, H. Ushio, and A. M. Bari. 2008. Anti-inflammatory effects of phytosteryl ferulates in colitis induced by dextran sulphate sodium in mice. Br. J. Pharmacol. 154: 812–824. Jana, S. and M. A. Choudhuri. 1981. Glycolate metabolism of three submerged aquatic angiosperms: Effect of heavy metals. Aquat. Bot. 11: 67-77. Jiang, Q., S. Christen, M. K. Shigenaga, and B. N. Ames. 2001. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 74: 714-722. Kamal-Eldin, A. and L. A. Appelqvist. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671-701. Kato, M. and Shimizu, S. 1987. Chlorophyll metabolism in higher plants. Vll. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidase degradation. Can. J. Bot. 65: 729-735. Keaney, J. F., Jr. J. M. Gaziano, A. Xu, B. Frei, J. Curran-Celentano, G. T. Shwaery, J. Loscalzo, and J. A. Vita. 1994. Low-dose alpha-tocopherol improves and high-dose alpha-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J. Clin. Invest. 93: 844–851. Khanna, S., S. Roy, A. Slivka, T. K. Craft, S. Chaki, and C. Rink. 2005. Neuroprotective properties of the natural vitamin E alpha-tocotrienol. Stroke 36: 2258-2264. Khanna, S., S. Roy, H. Ryu, P. Bahadduri, P. W. Swaan, and R. R. Ratan. 2003. Molecular basis of vitamin E action: tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. J. Biol. Chem. 278: 43508-43515. Kliebenstein, D. J. 2002. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 27: 675- 683. Law, M. Y., S.A. Charles and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochem. J. 210: 899-903. Lee, S. P., G. Y. Mar, and L. T. Ng. 2009. Effects of tocotrienol-rich fraction on exercise endurance capacity and oxidative stress in forced swimming rats. Eur. J. Appl. Physiol. 107:587-95. Leipner, J., Y. Fracheboud, and P. Stamp. 1999. Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ. Exp. Bot. 42: 129-139. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. McLean, E. O. 1982. Soil pH and lime requirement. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd (edition), A. L. Page (ed.) pp. 199-224. Academic Press, New York, USA. Mehlich, A. 1985. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15: 1409-1416. Miller, A. and K. H. Engel. 2006. Content of γ-oryzanol and composition of steryl ferulates in brown rice (Oryza sativa L.) of european origin. J. Agric. Food Chem. 54: 8127-8133. Misra, A. N., S. M. Sahu, M. Misra, P. Singh, I. Meera, N. Das, M. Kar, and P. Sahu. 1997. Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biol. Plantarum 39: 257-262. Mishima, K., T. Tanaka, F. Pu, N. Egashira, K. Iwasaki, R. Hidaka, K.Matsunaga, J. Takata, Y. Karube, and M. Fujiwara. 2003. Vitamin E isoforms α-tocotrienol and γ-tocopherol prevent cerebral infarction in mice. Neurosci. Lett. 377: 56-60. Munne-Bosch, S. 2005. The role of α-tocopherol in plant stress tolerance. J. Plant Physiol. 162: 743-748. Muller, L., K. Theile, and V. Bohm. 2010. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res. 54: 731-742. Murphy, J. and J. P. Riley. 1962. A modified single solution for determination of phosphate in natural waters. Anal. Chem. Acta. 179: 293-302. Nakano, M., K.Sugioka T. Nakamura, and T. Oki. 1980. Interaction between an organic hydroperoxide and an unsaturated phospholipid and α-tocopherol in model membranes. Biochem. Biophys. Acta. 619: 274-286. Nakno, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidaes in spinach chloroplast. Plant Cell Physiol. 22: 867-880. Newaz, M. A., and N.N. Nawal. 1999. Effect of gamma-tocotrienol on blood pressure, lipid peroxidation and total antioxidant status in spontaneously hypertensive rats (SHR). Clin. Exp. Hypertens. 21: 1297-313. Ohara, K., Y. Kiyotani, A. Uchida, R. Nagasaka, H. Maehara, S. Kanemoto, M. Hori, and H. Ushio. 2011. Oral administration of aminobutyric acid and γ-oryzanol prevents stress-induced hypoadiponectinemia. Phytomedicine 18: 655-660. Oka, T., M. Fujimoto, R. Nagasaka, H. Ushio, M. Hori, and H. Ozaki. 2010. Cycloartenyl ferulate, a component of rice bran oil-derived γ-oryzanol, attenuates mast cell degranulation. Phytomedicine 17: 152-156. Ouyang, S., S. He, P. Liu, W. Zhang, J. Zhang, and S. Chen. 2011. The role of tocopherol cyclase in salt stress tolerance of rice (Oryza sativa). Sci. China Life Sci. 54: 181-188. Park, S. K., Sanders B. G., and K. Kline. 2010. Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res. Treat. 124: 361-375. Papadopoulos, I. and V. V. Rendig. 1983. Interactive effects of salinity and nitrogen on growth and yield of tomato plants. Plant Soil 73: 47-57. Palumbo, M. J., F. E. Putz, and S. T. Talcott. 2007. Nitrogen fertilizer and gender effects on the secondary metabolism of yaupon, a caffeine-containing North American holly. Ecophysiology 151: 1-9. Porfirova, S., E. Bergmuller, S. Tropf, R. Lemke, and P. Dormann. 2002. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 99: 12495-12500. Rhoades, J. D. 1982. Soluble salts. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. 2nd edition, A. L. Page (ed.). pp. 167-178. Academic Press, New York, USA. Rong, N., L. M. Ausman, and R. J. Nicolosic. 1997. Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids 32: 303-309. Smirnoff, N.. 2000. Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr. Opin. Plant Biol. 3229-235. Sultana, N., T. Ikeda, and R. Itoh. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Experi. Bot. 42: 211-220. Szarka, A., B. Tomasskovics, and G. Banhegyi. 2012. The Ascorbate-glutathione-α - tocopherol triad in abiotic stress response. Int. J. Mol. Sci. 13: 4458-4483. Tavakkoli, E., F. Fatehi, S. Coventry, P. Rengasamy, and G. K. McDonald. 2011. Additive effects of Na+and Cl– ions on barley growth under salinity stress. J. Exp. Bot. 62: 2189-2203. Verardo, V., Y. Riciputi, G. Sorrenti, P. Ornaghi, B. Marangoni, and M. F. Caboni. 2013. Effect of nitrogen fertilisation rates on the content of fatty acids, sterols, tocopherols and phenolic compounds, and on the oxidative stability of walnuts. Food Sci. Technol. 50: 732-738. Wang, S. H., Z. M. Yang, H. Yang, B. Lu, S.Q. Li, and Y. P. Lu. 2004. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Bot. Bull. Acad. Sin. 45: 203-212. Wang, X. and P. J. Quinn. 1999. Vitamin E and its function in membranes. Prog. Lipid Res. 38: 309-336. Wefers, H. and H. Sies. 1988. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. Eur. J. Biochem. 174: 353-357. Wilson, T. A., H. M. Idreis, C. M. Taylor, and R. J. Nicolosi. 2002. Whole fat rice bran reduces the development of early aortic atherosclerosis in hypercholesterolemic hamsters compared with wheat bran. Nutr. Res. 22: 1319-1332. Xu, Z. and J. S. Godber. 1999. Purification and identification of components of γ-oryzanol in rice bran oil. J. Agric. Food Chem. 47: 2724-2728. Xu, Z., N. Hua, and J. S. Godber. 2001. Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2, 2‘-Azobis (2-methylpropionamidine) dihydrochloride. J. Agric. Food Chem. 49: 2077-2081. Yang, Y., C. Yin, W. Li, and X. Xu. 2008. Alpha-tocopherol is essential for acquired chill light tolerance in the cyanobacterium Synechocystis sp. Strain PCC6803. J. Bacteriol. 190: 1554-1560. Yoshida, S., K. Abe, R. Busto, B. D. Waston K. Kogure, and M. D. Ginsberg. 1982. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res. 245: 307-316. Yusuf, M. A., D. Kumar, R. Rajwanshi, R. J. Strasser, M. Tsimilli-Michael, Govindjee, and N. B. Sarin. 2010. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochem. Biophys. Acta. 1797: 1428-1438. Zeng, L., M. C. Shannon, and S. M. Lesh. 2001. Timing of salinity stress affects rice growth and yield components. Agric. Water Manage. 38: 191-206. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60553 | - |
| dc.description.abstract | 生育醇 (Toc)、生育三烯醇 (T3) 及γ-谷維素為水稻的主要機能性成分。Toc也是植物體中重要的脂溶性抗氧化物;在氧化逆境下,其可清除植物體內過多的ROS及脂質過氧化物。本研究目的為探討不同土壤鹽度及氮肥用量對水稻及榖粒中Toc、T3及γ-谷維素含量之影響。盆栽試驗於本校人工氣候室中進行 (日溫/夜溫: 30/25℃)。氯化鈉於水稻生殖生長後期 (插秧後95天) 加入土壤中,四種處理的導電度分為0.3 (對照組, EC0.3)、2 (EC2)、4 (EC4) 及8 (EC8) dS m-1。氮肥試驗之氮肥施用量分為0N (0 g urea pot-1)、0.5N (0.25 g urea pot-1)、1N (對照組, 0.5 g urea pot-1)、2N (1.0 g urea pot-1) 及3N (1.5 g urea pot-1),試驗設計為完全隨機排列 (CRD)。鹽分試驗結果顯示,隨土壤EC值升高,穀粒中總維生素E、總T3、α-Toc、α-T3及γ-T3濃度和對照組相比皆有顯著增加,但總Toc的濃度則無顯著差異。在高鹽度 (EC8) 處理下榖粒中γ-谷維素的濃度有顯著增加。丙二醛 (MDA) 濃度在鹽分處理下只葉片有顯著增加。隨鹽度增加,地上部與榖粒之Ascorbate (AsA) 濃度有顯著降低。氮肥試驗結果顯示,2N處理組的榖粒中總Toc、總T3、α-T3、β-Toc、γ-Toc、γ-T3及AsA濃度皆顯著比對照組高,但δ-T3則顯著較低。除0N處理外,其他氮肥處理組的γ-谷維素濃度顯著降低。在0N及0.5N處理下MDA含量皆顯著增加。本研究說明適度提升土壤鹽度可使穀粒的總維生素E與總T3的濃度增加,且不影響榖粒產量。氮肥試驗只發現在2N處理組中榖粒的總Toc及總T3、α-T3、β-Toc、γ-Toc及γ-T3濃度有明顯增加,且在0N處理下會使榖粒MDA及H2O2濃度上升,顯示缺氮可能造成榖粒無法正常生合成Toc、T3及其它抗氧化物質,導致產生氧化壓力的增加。γ-谷維素的濃度顯示必須在高鹽度與缺氮環境下才有明顯提升,此可能較不適用在實際耕作方式上。 | zh_TW |
| dc.description.abstract | Tocopherol (Toc), tocotrienols (T3) and γ-oryzanol are the main functional components of rice. Toc is an important lipid antioxidant in plants that can remove excessive ROS and lipid peroxides. The objective of this study was to investigate the effect of soil salinity and nitrogen fertilizer on Toc, T3 and γ-oryzanol contents in rice. The experiment was conducted on the pot culture in the artificial climate greenhouse (day/night temperature: 30/25℃). NaCl was added during the reproductive stage of rice (95 days after transplanting), the treatments were four levels of salinity with electrical conductivity of 0.3 (EC0.3), 2 (EC2), 4 (EC4) and 8 (EC8) dS m-1. The nitrogen fertilizer treatments were 0N (0 g urea pot-1), 0.5N (0.25 g urea pot-1), 1N (control, 0.5 g urea pot-1), 2N (1.0 g urea pot-1) and 3N (1.5 g urea pot-1) times of recommended application rates, they were arranged in a completetly randomized design. Results showed that compared with the control group, concentrations of total vitamin E, total T3, α-Toc, α-T3 and γ-T3 in grains increased with increasing soil salinity, however the concentration of total Toc was not affected. Under high salinity (EC8) conditions, γ-oryzanol concentration increased significantly in grains while γ-Toc decreased. Salinity treatments caused MDA concentration to increase in the leaf. The concentration of ascorbate (AsA) was noted to decrease significantly in leaf and grains while increasing salinity. Results in nitrogen fertilizer treatments showed that the concentrations of total Toc, total T3, α-T3, β-Toc, γ-Toc, γ-T3 and AsA increased significantly while the concentration of δ-T3 reduced as compared with the control. In grains, γ-oryzanol concentration was higher in 0N than other treatments. Under 0N and 0.5N treatments, MDA concentration was significantly increased. This study indicates that moderately increasing soil salinity can enhance total vitamin E and total T3 concentrations in rice grains without affecting grain yield. 2N treatment showed significant increase in total Toc and total T3 concentrations, whereas 0N treatment cause MDA and H2O2 concentrations to increase in grains; this indicates that nitrogen deficiency may reduce the biosynthesis of Toc, T3 and other antioxidants, consequently that may lead to oxidative stress. Although γ-oryzanol concentration was shown to increase in the high salinity and nitrogen deficiency conditions, the application of this farming practice to enhance its level may not be practical. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:21:26Z (GMT). No. of bitstreams: 1 ntu-102-R00623021-1.pdf: 3439545 bytes, checksum: fd408cfc7a8649ace6cfe771f9e2f74b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract IV 圖目錄 VII 表目錄 IX 常用專有名詞縮寫對照表 X 第一章 前言 1 第二章 前人研究 3 一、 生育醇與生育三烯醇 3 二、 γ-谷維素 5 三、 影響生育醇、生育三烯醇及γ-谷維素含量之因素 6 四、 植物氧化逆境與抗氧化系統 6 五、 土壤鹽度對植物生長與活性物質含量之影響 7 六、 氮肥用量對植物生長與活性物質含量之影響 8 第三章 材料與方法 13 材料 13 方法 13 第四章 結果 25 一、 鹽分試驗 25 二、 氮肥試驗 43 第五章 討論 60 一、 試驗前後土壤基本化學性質之變化 60 二、 水稻生長與養分吸收 62 三、 水稻生育醇、生育三烯醇及γ-谷維素含量之影響 63 四、 土壤鹽度與氮肥施用量對水稻氧化壓力及抗氧化系統之影響 65 第六章 結論 67 第七章 參考文獻 68 附錄 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氮肥 | zh_TW |
| dc.subject | 土壤鹽度 | zh_TW |
| dc.subject | γ-谷維素 | zh_TW |
| dc.subject | 生育三烯醇 | zh_TW |
| dc.subject | 生育醇 | zh_TW |
| dc.subject | 稻米 | zh_TW |
| dc.subject | nitrogen fertilizer | en |
| dc.subject | tocopherols | en |
| dc.subject | tocotrienols | en |
| dc.subject | γ-oryzanol | en |
| dc.subject | soil salinity | en |
| dc.subject | rice | en |
| dc.title | 土壤鹽度及氮肥用量對水稻生育醇、生育三烯醇及γ-谷維素含量之影響 | zh_TW |
| dc.title | Effects of soil salinity and nitrogen fertilizer on tocopherols, tocotrienols and γ-oryzanol contents in rice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林棟樑,鍾仁賜,洪傳揚 | |
| dc.subject.keyword | 稻米,生育醇,生育三烯醇,γ-谷維素,土壤鹽度,氮肥, | zh_TW |
| dc.subject.keyword | rice,tocopherols,tocotrienols,γ-oryzanol,soil salinity,nitrogen fertilizer, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
