請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60537完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張建成(Chien-Cheng Chang) | |
| dc.contributor.author | Shang-Chin Li | en |
| dc.contributor.author | 李尚瑾 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:20:57Z | - |
| dc.date.available | 2016-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 1. Corso, M., et al., Boron nitride nanomesh. Science, 2004. 303(5655): p. 217-220.
2. Ng, M.L., et al., Formation and temperature evolution of Au nanoparticles supported on the h-BN nanomesh. Surface Science, 2008. 602(6): p. 1250-1255. 3. Han, W.-Q., et al., Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Applied Physics Letters, 2008. 93(22): p. 223103. 4. Zhi, C., et al., Large?Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties. Advanced Materials, 2009. 21(28): p. 2889-2893. 5. Zeng, H., et al., 'White Graphenes': Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Lett, 2010. 6. Janotti, A., S.H. Wei, and D. Singh, First-principles study of the stability of BN and C. Physical Review B, 2001. 64(17). 7. Chen, C.-W., M.-H. Lee, and S. Clark, Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field. Nanotechnology, 2004. 15(12): p. 1837. 8. Lee, J., et al. State-of-the-art graphene transistors on hexagonal boron nitride, high-k, and polymeric films for GHz flexible analog nanoelectronics. in Electron Devices Meeting (IEDM), 2012 IEEE International. 2012. IEEE. 9. Sichel, E., et al., Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Physical Review B, 1976. 13(10): p. 4607-4611. 10. Chang, C., et al., Isotope Effect on the Thermal Conductivity of Boron Nitride Nanotubes. Physical Review Letters, 2006. 97(8). 11. Lindsay, L. and D.A. Broido, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Physical Review B, 2011. 84(15). 12. Albe, K., et al., Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs. Physical Review B, 2002. 66(3). 13. Tersoff, J., Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon. Physical Review Letters, 1988. 61(25): p. 2879-2882. 14. Lindsay, L. and D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Physical Review B, 2010. 81(20). 15. Sevik, C., et al., Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B, 2011. 84(8). 16. Hu, J., X. Ruan, and Y.P. Chen, Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study. Nano Letters, 2009. 9(7): p. 2730-2735. 17. Wei, N., et al., Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology, 2011. 22(10): p. 105705. 18. Evans, W.J., L. Hu, and P. Keblinski, Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Applied Physics Letters, 2010. 96(20): p. 203112. 19. Ouyang, T., et al., Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology, 2010. 21(24): p. 245701. 20. Knittle, E., et al., Experimental and theoretical equation of state of cubic boron nitride. Nature, 1989. 337(6205): p. 349-352. 21. Grimsditch, M., E.S. Zouboulis, and A. Polian, Elastic constants of boron nitride. Journal of Applied Physics, 1994. 76(2): p. 832. 22. ?ahin, H., et al., Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 2009. 80(15). 23. Li, C., et al., Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology, 2009. 20(38): p. 385707. 24. Liu, Y., X. Zou, and B.I. Yakobson, Dislocations and Grain Boundaries in Two-Dimensional Boron Nitride. ACS nano, 2012. 6(8): p. 7053-7058. 25. Jin, C., et al., Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments. Physical Review Letters, 2009. 102(19). 26. Muralidharan, K., et al., Asymmetric energy transport in defected boron nitride nanoribbons: Implications for thermal rectification. AIP Advances, 2011. 1(4): p. 041703. 27. Yang, K., et al., Effect of triangle vacancy on thermal transport in boron nitride nanoribbons. Solid State Communications, 2011. 151(6): p. 460-464. 28. Muller-Plathe, F., A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys, 1997. 106. 29. Stuart, S.J., A.B. Tutein, and J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. The Journal of Chemical Physics, 2000. 112: p. 6472. 30. Chen, G., Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. 2005: Oxford University Press, USA. 31. Pathria, R.K., Statistical Mechanics. 1996: Elsevier Science. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60537 | - |
| dc.description.abstract | 六方氮化硼(Hexagonal boron-nitride, h-BN)為一種結構類似於石墨烯(Graphene)的二維材料,由於在實驗以及計算上發現h-BN具有本質能隙(intrinsic bandgap)的重要電學特性,使其繼石墨烯之後成為極具潛力之電子元件材料。目前利用機械或化學剝離法、化學氣象沉積法所生長出來的h-BN經常伴隨缺陷的產生,因此我們將調查各種缺陷對於h-BN的力學與熱學性值影響。
本文所利用的方法為分子動力學模擬(Molecular dynamics)計算方法,使用在熱學性質上較為準確的力場函數(potential),幫助我們提高計算的可靠性。接著我們以此為基礎計算了完美h-BN晶格的熱傳以及力學特性,並研究了受到缺陷時在這些缺陷上的變化。 首先在奈米帶的情形下,我們探討了手性角(chiral angles)對奈米帶的熱傳以及力學影響,並得到在兩個最常見角度;鋸齒形(Zigzag)以及手扶椅形(Armchair)會有最高的熱傳能力,而在中間角度10度~13度時熱傳能力最低,而力學性質方面各角度的奈米帶楊氏係數值差異不大,但皆小於完美h-BN狀態的數值。而在孔洞缺陷的部分,我們首先從能量觀點出發,得到在刪除同樣數目的原子下,由多個原子所構成的孔洞缺陷能量,會比單原子孔洞的能量低,同時在熱傳能力的計算上我們得到在同樣的刪除原子數目上,大洞對熱傳影響小於小洞的影響。 最後我們將討論晶界缺陷的影響,由第一定理計算得到晶界中的差排存4|8環的排列形式,利用分子動力學模擬生成同樣結構,並以原子級應力計算觀察差排中的4環以及8環分別受到壓縮以及拉伸應力。而差排的存在對於力學的影響上,我們發現差排的存在會使斷裂強度下降,但隨著差排密度的提高,斷裂強度反而有所提升。 | zh_TW |
| dc.description.abstract | Hexagonal boron-nitride (h-BN) nanosheets are promising materials for the next generation electronic devices. In this work, we systematically investigated the dependencies of h-BN thermal conductivities on nanoribbon edge chiral angles, vacancy concentration by carrying out a series of non-equilibrium molecular dynamics (NEMD) simulations.
Our simulation results indicate the thermal conductivities of BN nanoribbons have similar edge chiral angle dependencies with graphene nanoribbons, and longer BN nanoribbons yield higher thermal conductivities. Furthermore, the present study also reveals that thermal conductivity of BN nanosheets undergoes significant drops due to phonon scattering induced by vacancies. We also found that large vacancies are energetically more favorable than small vacancies, implying the aggregation of small vacancies into vacancy clusters, thereby minimizing thermal conductivity drops of BN nanosheets. We also construct the dislocations and grain boundaries based on the geometries calculated by first principle method. In these results, we have learned that 4|8dislocation pairs can exists more energetically favorable than 5|7 dislocation pair due its unpolar property. With this statement, we started our study by constructing more grain boundaries spread in a wide misorientation angles. Our results have showed an contradiction to dislocation theorem which dislocations would reduce the mechanical strength several orders from pristine structure. But it is actually performing that mechanical strength can’t decrease over an order of the strength, and even increased when dislocation density become higher. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:20:57Z (GMT). No. of bitstreams: 1 ntu-102-R00543081-1.pdf: 10099952 bytes, checksum: bc3697721420e88da294f7a320f9b30d (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 II
中文摘要 III Abstract V 目錄 VII 圖表目錄 X 第一章 緒論 1 1-1引言 1 1-2-1 原子結構與倒晶格空間 3 1-2-2 製造方法 5 1-3 文獻回顧 7 1-3-1 第一原理計算與電學性質 7 1-3-2熱學與力學性質的研究 9 1-3-3缺陷性質的研究 14 1-5研究目的 16 第二章 分子動力學模擬方法 19 2-1 前言 19 2-2 分子力學模擬簡介 20 2-2-1力場簡述 21 2-2-2 牛頓運動方程式數值解法 22 2-2-3系綜 24 2-2-4熱浴與控溫方法 31 2-2-5 共軛梯度法 37 2-3熱學參數 38 第三章 六方氮化硼的力學與熱學性質計算 43 3-1簡介 43 3-3 六方氮化硼奈米帶的抗拉強度 45 3-4 手性角對六方氮化硼奈米帶熱性質的影響 47 3-5應變對六方氮化硼奈米帶之熱傳性質影響 50 第四章 六方氮化硼孔洞缺陷對熱傳影響 56 4-1 簡介 56 4-2 孔洞缺陷對熱傳能力的影響 57 4-3 孔洞缺陷相關性質探討 62 4-4 本章結論 66 第五章 晶界生成與基本性質研究 68 5-1前言 68 5-2 晶界結構 68 5-3 差排密度 70 5-4 本章結論 75 第六章 結論與未來展望 76 6-1 結論 76 6-2 未來展望 77 Reference 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗拉強度 | zh_TW |
| dc.subject | 分子動力學模擬 | zh_TW |
| dc.subject | 熱傳係數 | zh_TW |
| dc.subject | 奈米帶 | zh_TW |
| dc.subject | 晶界 | zh_TW |
| dc.subject | 孔洞缺陷 | zh_TW |
| dc.subject | 楊氏係數 | zh_TW |
| dc.subject | 六方氮化硼 | zh_TW |
| dc.subject | h-BN | en |
| dc.subject | molecular dynamics | en |
| dc.subject | thermal conductivity | en |
| dc.subject | vacancy | en |
| dc.subject | boron nitride nanoribbon | en |
| dc.title | 六方氮化硼的力學以及熱學性質研究 | zh_TW |
| dc.title | An Investigation of Mechanical and Thermal Properties of Hexagonal - Boron Nitride by Atomistic Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 包淳偉(Chun-Wei Pao) | |
| dc.contributor.oralexamcommittee | 張家歐(Chia-Ou Chang),劉德歡(Te-Huan Liu),黃世霖(Shih-Lin Huang) | |
| dc.subject.keyword | 六方氮化硼,分子動力學模擬,奈米帶,孔洞缺陷,晶界,熱傳係數,抗拉強度,楊氏係數, | zh_TW |
| dc.subject.keyword | h-BN,boron nitride nanoribbon,vacancy,thermal conductivity,molecular dynamics, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
