Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60508
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林榮耀(Jung-Yaw Lin)
dc.contributor.authorKang-Hsu Fanen
dc.contributor.author范綱緒zh_TW
dc.date.accessioned2021-06-16T10:20:07Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation1 El-Serag, H. B. Hepatocellular carcinoma. The New England journal of medicine 365, 1118-1127, doi:10.1056/NEJMra1001683 (2011).
2 Thomas, M. B. & Abbruzzese, J. L. Opportunities for targeted therapies in hepatocellular carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 8093-8108, doi:10.1200/JCO.2004.00.1537 (2005).
3 Wilhelm, S. M. et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer research 64, 7099-7109, doi:10.1158/0008-5472.CAN-04-1443 (2004).
4 Bosch, F. X., Ribes, J., Diaz, M. & Cleries, R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, S5-S16 (2004).
5 Whittaker, S., Marais, R. & Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 29, 4989-5005, doi:10.1038/onc.2010.236 (2010).
6 Molassiotis, A. et al. Use of complementary and alternative medicine in cancer patients: a European survey. Ann Oncol 16, 655-663, doi:DOI 10.1093/annonc/mdi110 (2005).
7 Aburada, M., Sasaki, H. & Harada, M. [Pharmacological studies of Gardeniae fructus. II. Contribution of the constituent crude drugs to choleretic activity of 'Inchinko-to' in rats (author's transl)]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 96, 147-153 (1976).
8 Chen, Y. H. et al. Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells. World journal of gastroenterology : WJG 18, 7158-7165, doi:10.3748/wjg.v18.i48.7158 (2012).
9 Tan, Y. et al. Managing the combination of nonalcoholic Fatty liver disease and metabolic syndrome with chinese herbal extracts in high-fat-diet fed rats. Evidence-based complementary and alternative medicine : eCAM 2013, 306738, doi:10.1155/2013/306738 (2013).
10 Nam, K. N. et al. Genipin inhibits the inflammatory response of rat brain microglial cells. International immunopharmacology 10, 493-499, doi:10.1016/j.intimp.2010.01.011 (2010).
11 Wang, G. F. et al. Genipin inhibits endothelial exocytosis via nitric oxide in cultured human umbilical vein endothelial cells. Acta pharmacologica Sinica 30, 589-596, doi:10.1038/aps.2009.31 (2009).
12 Tanaka, M., Yamazaki, M. & Chiba, K. Neuroprotective Action of Genipin on Tunicamycin-Induced Cytotoxicity in Neuro2a Cells. Biol Pharm Bull 32, 1220-1223 (2009).
13 Cao, H. L. et al. Genipin Induced Apoptosis Associated with Activation of the c-Jun NH2-Terminal Kinase and p53 Protein in HeLa Cells. Biol Pharm Bull 33, 1343-1348 (2010).
14 Feng, Q. A. et al. Apoptosis induced by genipin in human leukemia K562 cells: involvement of c-Jun N-terminal kinase in G(2)/M arrest. Acta pharmacologica Sinica 32, 519-527, doi:Doi 10.1038/Aps.2010.158 (2011).
15 Wang, N. et al. Up-Regulation of TIMP-1 by Genipin Inhibits MMP-2 Activities and Suppresses the Metastatic Potential of Human Hepatocellular Carcinoma. Plos One 7, doi:ARTN e46318
DOI 10.1371/journal.pone.0046318 (2012).
16 Carmeliet, P. & Jain, R. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307, doi:10.1038/nature10144 (2011).
17 Hawkins, M. J. Clinical trials of antiangiogenic agents. Current opinion in oncology 7, 90-93 (1995).
18 Koch, S., Tugues, S., Li, X., Gualandi, L. & Claesson-Welsh, L. Signal transduction by vascular endothelial growth factor receptors. The Biochemical journal 437, 169-183, doi:10.1042/BJ20110301 (2011).
19 Svensson, S. et al. ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24, 4370-4379, doi:DOI 10.1038/sj.onc.1208626 (2005).
20 Trinh, X. B. et al. The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British journal of cancer 100, 971-978, doi:10.1038/sj.bjc.6604921 (2009).
21 Olsson, A.-K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling - in control of vascular function. Nature reviews. Molecular cell biology 7, 359-371, doi:10.1038/nrm1911 (2006).
22 Karar, J. & Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Frontiers in molecular neuroscience 4, 51, doi:10.3389/fnmol.2011.00051 (2011).
23 Liu, Y., Cox, S. R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circulation research 77, 638-643 (1995).
24 Semenza, G. L. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology 19, 176-182, doi:DOI 10.1152/physiol.00001.2004 (2004).
25 Shen, Y. C., Hsu, C. & Cheng, A. L. Molecular targeted therapy for advanced hepatocellular carcinoma: current status and future perspectives. Journal of gastroenterology 45, 794-807, doi:10.1007/s00535-010-0270-0 (2010).
26 Llovet, J. M. et al. Sorafenib in advanced hepatocellular carcinoma. The New England journal of medicine 359, 378-390, doi:10.1056/NEJMoa0708857 (2008).
27 Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189, doi:Doi 10.1016/S0092-8674(02)00833-4 (2002).
28 Guertin, D. & Sabatini, D. Defining the role of mTOR in cancer. Cancer cell 12, 9-22, doi:10.1016/j.ccr.2007.05.008 (2007).
29 Fasolo, A. & Sessa, C. mTOR inhibitors in the treatment of cancer. Expert Opin Inv Drug 17, 1717-1734, doi:Doi 10.1517/13543780802447891 (2008).
30 Frias, M. A. et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16, 1865-1870, doi:DOI 10.1016/j.cub.2006.08.001 (2006).
31 Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-U1130, doi:Doi 10.1038/Ncb1183 (2004).
32 Zhou, H. Y. & Huang, S. L. Role of mTOR Signaling in Tumor Cell Motility, Invasion and Metastasis. Curr Protein Pept Sc 12, 30-42 (2011).
33 Sahin, F. et al. mTOR and P70 S6 kinase expression in primary liver neoplasms. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 8421-8425, doi:10.1158/1078-0432.CCR-04-0941 (2004).
34 Villanueva, A. et al. Pivotal Role of mTOR Signaling in Hepatocellular Carcinoma. Gastroenterology 135, 1972-1983, doi:DOI 10.1053/j.gastro.2008.08.008 (2008).
35 Boulay, A. et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer research 64, 252-261 (2004).
36 Rini, B. I. Temsirolimus, an inhibitor of mammalian target of rapamycin. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 1286-1290, doi:10.1158/1078-0432.CCR-07-4719 (2008).
37 Wolpin, B. M. et al. Oral mTOR Inhibitor Everolimus in Patients With Gemcitabine-Refractory Metastatic Pancreatic Cancer. Journal of Clinical Oncology 27, 193-198, doi:Doi 10.1200/Jco.2008.18.9514 (2009).
38 Schmitz, A. A., Govek, E. E., Bottner, B. & Van Aelst, L. Rho GTPases: signaling, migration, and invasion. Experimental cell research 261, 1-12, doi:10.1006/excr.2000.5049 (2000).
39 Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes & development 11, 2295-2322 (1997).
40 Sahai, E. & Marshall, C. J. RHO-GTPases and cancer. Nat Rev Cancer 2, 133-142, doi:10.1038/nrc725 (2002).
41 Fritz, G., Just, I. & Kaina, B. Rho GTPases are over-expressed in human tumors. International journal of cancer. Journal international du cancer 81, 682-687 (1999).
42 Kamai, T. et al. Overexpression of RhoA, Rac1, and Cdc42 GTPases is associated with progression in testicular cancer. Clinical Cancer Research 10, 4799-4805, doi:Doi 10.1158/1078-0432.Ccr-0436-03 (2004).
43 Bolos, V., Gasent, J. M., Lopez-Tarruella, S. & Grande, E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Oncotargets Ther 3, 83-97 (2010).
44 Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Current opinion in cell biology 18, 516-523, doi:10.1016/j.ceb.2006.08.011 (2006).
45 Liu, L. et al. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. The Journal of biological chemistry 285, 38362-38373, doi:10.1074/jbc.M110.141168 (2010).
46 Nethe, M. & Hordijk, P. The role of ubiquitylation and degradation in RhoGTPase signalling. Journal of cell science 123, 4011-4018, doi:10.1242/jcs.078360 (2010).
47 Deramaudt, T. et al. FAK phosphorylation at Tyr-925 regulates cross-talk between focal adhesion turnover and cell protrusion. Molecular biology of the cell 22, 964-975, doi:10.1091/mbc.E10-08-0725 (2011).
48 Talbot, L., Bhattacharya, S. & Kuo, P. Epithelial-mesenchymal transition, the tumor microenvironment, and metastatic behavior of epithelial malignancies. International journal of biochemistry and molecular biology 3, 117-136 (2012).
49 Hu, T. H. et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer 97, 1929-1940, doi:10.1002/cncr.11266 (2003).
50 Pelicano, H., Carney, D. & Huang, P. ROS stress in cancer cells and therapeutic implications. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy 7, 97-110, doi:10.1016/j.drup.2004.01.004 (2004).
51 Liu, L. et al. Rapamycin Inhibits IGF-1 Stimulated Cell Motility through PP2A Pathway. Plos One 5, doi:ARTN e10578
DOI 10.1371/journal.pone.0010578 (2010).
52 Garcia-Maceira, P. & Mateo, J. Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene 28, 313-324, doi:10.1038/onc.2008.398 (2009).
53 Pratheeshkumar, P. et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways. Plos One 7, e47516, doi:10.1371/journal.pone.0047516 (2012).
54 Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Molecular and cellular biology 21, 3995-4004, doi:10.1128/MCB.21.12.3995-4004.2001 (2001).
55 Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proceedings of the National Academy of Sciences of the United States of America 105, 17414-17419, doi:10.1073/pnas.0809136105 (2008).
56 Pang, X. et al. 1'-Acetoxychavicol acetate suppresses angiogenesis-mediated human prostate tumor growth by targeting VEGF-mediated Src-FAK-Rho GTPase-signaling pathway. Carcinogenesis 32, 904-912, doi:10.1093/carcin/bgr052 (2011).
57 Yang, H. et al. mTOR kinase structure, mechanism and regulation. Nature 497, 217-223, doi:10.1038/nature12122 (2013).
58 Stefania Di, T. et al. Structure of genipin in solution: a combined experimental and theoretical study. RSC Advances 3, doi:10.1039/c3ra42147c (2013).
59 Ran, T. et al. A selectivity study on mTOR/PI3Kalpha inhibitors by homology modeling and 3D-QSAR. Journal of molecular modeling 18, 171-186, doi:10.1007/s00894-011-1034-3 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60508-
dc.description.abstract肝細胞癌(Hepatocellular carcinoma)是全球發生率及死亡率極高的癌症之一,在台灣也高居十大癌症死亡原因的第二名。可能造成肝細胞癌形成的致病機轉有很多,如長期感染B型或C型肝炎病毒、酒精性肝炎以及長期攝取受黃麴毒素感染的食物等等。目前治療肝細胞癌最有效的方式是手術切除,然後針對那些無法經由手術治療的患者,化學療法成為另一個選擇。目前在臨床上已經有許多小分子藥物被開發,並且應用於肝細胞癌的治療,像是Sorafenib。但由於肝癌細胞具有高度轉移性,導致復發率居高不下。基於此點,研發抗肝細胞癌轉移的藥物成為一個急切的課題。
科學界近年積極探究中草藥的治病機轉,探索中藥治療肝癌之路。本研究以Huh7肝細胞癌細胞株來檢測中草藥對於抗肝細胞癌之效果。在篩選多數中草藥之後,發現NTNU05可以不毒殺細胞的方式抑制細胞爬行。進一步分析此抗細胞轉移的細胞機制,發現NTNU05可以透過阻礙FAK/Src之訊息傳遞路徑而抑制Rac1的活化,進而抑制肌絲蛋白重組,最後導致Huh7細胞爬行能力下降。NTNU05亦可抑制AKT/mTOR之訊息傳遞路徑,最終導致VEGFA的表現量減少而抑制血管新生。此外,NTNU05可以穩定E-cadherin和beta-catenin之複合體,並抑制Snail以及Slug的進核,而抑制Huh7細胞轉變為間葉細胞(mesenchyme)型態。本研究也利用異種移植(xenograft)腫瘤小鼠模式,將Huh7細胞注射到嚴重免疫不全症小鼠(NOD-SCID)之皮下,探討NTNU05在活體(in vivo)的抗癌效果。發現NTNU05可以顯著抑制腫瘤生長;除此之外,透過免疫組織化學染色法鑑定(IHC),CD31(血管上皮之標記)亦顯著減少,顯示NTNU05在活體中亦可透過抑制血管新生之方式進而抑制腫瘤生長。
本研究亦探究NTNU05有效成分之-NTNU05-1之抗癌能力。發現NTNU05-1亦可以透過抑制Rho GTPases和mTOR相關訊息傳遞路徑而達到抑制Huh7細胞之爬行和血管新生。根據以上的實驗結果,本研究證明中草藥NTNU05以及其有效成分-NTNU05-1具有抑制肝細胞癌轉移及血管新生的能力,在往後肝細胞癌的治療甚至預防上,具有相當大的發展潛力。
zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) is one of the most malignant human cancers over the world, and now, it is the second cause of cancer deaths in Taiwan. It is usually caused by hepatitis virus infection, alatoxin-B1-contained food intake, and chromic alcohol consumption. Multiple therapeutic strategies have been developed so far, such as some small molecular compounds like Sorafinib, which is used in clinical treatment. However, the cure rate of HCC remains poor due to the high metastatic effect with the high recurrence rate. Therefore. it is an urgent need for investigation of a novel anti-metastasis drug for therapy of HCC.
Recently, Chinese Herbal Medicines (CHMs) are wildly used on the prevention and treatment against HCC. In this study, we found that CHM NTNU05 water-extracts, which are usually used to treat rheumatoid arthritis by its anti-inflammatiotory activity has an inhibitory effect on Huh7 cells migration, demonstrated by transwell migration/invasion assays. We further showed that aqueous extracts of NTNU05 could inhibit Huh7 cells migration/invasion by suppressing the FAK/SRC/Rac1, resulting in disrupting the F-actin rearrangement. NTNU05 also inhibited AKT/mTOR pathway, leading to the decrement of VEGFA. In addition, aqueous extracts of NTNU05 could promote the formation of E-cadherin and beta-catenin complex, the adhesive structures between adjacent cells, and decreased the translocation of Snail/Slug to nucleus. We further showed that NTNU05 also had inhibitory effects on tumor growth and angiogenesis in vivo by a mouse xenograft model.
Furthermore, we found that NTNU05-1, one of the active components of NTNU05, contributed its anti-migration and angiogenesis activities to NTNU05 through inhibition of RhoGTPases and mTOR-related pathway. Taken together, NTNU05 and NTNU05-1 may be potential chemotherapeutic agents for HCC.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:20:07Z (GMT). No. of bitstreams: 1
ntu-102-R00442005-1.pdf: 7209329 bytes, checksum: ad8f3ac98ee67b984a9b2d05313e2f58 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract III
Chapter 1. Introduction 1
1. Hepatocellular cell carcinoma (HCC) 2
2. NTNU05 3
3. NTNU05-1 3
4. VEGF pathway 4
5. Mammalian target of rapamycin (mTOR) 5
6. Rho-GTPase family 7
7. Research purpose of present investigation 8
Chapter 2. Materials and methods 9
1. Cell lines, Animals, and Reagents 10
2. Preparation of Chinese Herb Medicine (CHM) 11
3. Cell culture 11
4. Cell viability assay 11
5. Cell migration/ invasion assay 12
6. Wound healing assay 13
7. Confocal microscopy 13
8. RNA extraction and reverse transcription 14
i. RNAs extraction 14
ii. Reverse transcription 15
9. Real time-quantitative PCR (Q-PCR) 16
10. Western blot analysis 16
i. Preparation of cell lysates: 16
ii. Quantification of protein concentration 17
iii. Preparation of sodium-dodecyl-sulfate –polyacrylamide gels (SDS-polyacrylamide gels) 18
iv. Protein sample preparation 19
v. Electrophoresis 19
vi. Semi-dry blotting 20
vii. Immunoblotting 20
11. Nuclear and cytoplasmic fractionation 21
12. GST-PBD/RBD pull down assay 22
i. Purification of GST-PBD (p21-binding domain, rac1/cdc42 binding domain) and GST-RBD (Rho binding domain) from E.coli extracts 22
ii. Cdc42/Rac1 and RhoA activity assay 23
13. In vitro angiogenesis: endothelial cell tube formation assay 24
14. Tumor xenograft analysis for tumor growth 24
15. 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay for measurement of ROS scavenging activity 25
16. Chemiluminescence assay for ROS measurement 26
17. Statistical analysis 26
Chapter 3. Results 27
1. NTNU05 showed inhibitory effects on migration/invasion of Huh7 cells in a non-toxic manner. 28
2. NTNU05 disrupted the actin rearrangement of Huh7 cells by inhibiting Rac-1 activity via Src/FAK signaling. 28
3. NTNU05 inhibited epithelial-mesenchymal transition (EMT) of Huh7 cells. 29
4. NTNU05 suppressed AKT/mTOR/HIF1a/VEGFA signaling pathway. 30
5. NTNU05 inhibited VEGF-induced migration and capillary structure formation of Human umbilical vein endothelial cells (HUVECs). 32
6. NTNU05 down-regulated ROS production of Huh7 cells. 32
7. NTNU05 decreased tumor growth and angiogenesis in vivo. 33
8. NTNU05-1 inhibited Huh7 cell migration in non-toxic manner. 34
9. NTNU05-1 suppressed mTOR signaling pathway. 35
10. NTNU05-1 inhibited VEGFR2 activation. 36
11. NTNU05-1 inhibited motility of Huh7 cells by suppressing activities of Rac1, Cdc42, and RhoA. 36
Chapter 4. Discussion 38
Chapter 5. Figures 44
Chapter 6. Table 75
Chapter 7. References 77
dc.language.isoen
dc.subject細胞爬行zh_TW
dc.subject血管新生zh_TW
dc.subject血管內皮生長因子-Azh_TW
dc.subject中草藥zh_TW
dc.subject肝細胞癌zh_TW
dc.subjectmTORzh_TW
dc.subjectmTORen
dc.subjectChinese Herbal Medicineen
dc.subjectMigrationen
dc.subjectAngiogenesisen
dc.subjectVEGFAen
dc.subjectHepatocellular carcinomaen
dc.title中草藥: NTNU05抗肝癌之研究zh_TW
dc.titleMechanisms of anti-hepatocellular carcinoma of Chinese Herbal Medicine: NTNU05en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明學(Ming-Shyue Lee),呂紹俊(Shao-Chun Lu),李德章(Te-Chang Lee)
dc.subject.keyword肝細胞癌,中草藥,細胞爬行,血管新生,血管內皮生長因子-A,mTOR,zh_TW
dc.subject.keywordHepatocellular carcinoma,Chinese Herbal Medicine,Migration,Angiogenesis,VEGFA,mTOR,en
dc.relation.page82
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
7.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved