Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林正芳
dc.contributor.authorYi-Cheng YANGen
dc.contributor.author楊以丞zh_TW
dc.date.accessioned2021-06-16T10:19:11Z-
dc.date.available2018-08-26
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationBedard, C. and Knowles, R. (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiological Reviews 53(1), 68-84.
Brooks, B.W. (1990) Basic aspects and recent developments in suspension polymerisation. Makromolekulare Chemie. Macromolecular Symposia 35-36(1), 121-140.
Chibata, I., Tosa, T. and Sato, T. (1986) Continuous production of L-Aspartic Acid - improvement of productivity by both development of immobilization method and construction of new Escherichia-Coli Strain. Applied Biochemistry and Biotechnology 13(3), 231-240.
Gemeiner, P., Štefuca, V. and Baleš, V. (1993) Biochemical engineering of biocatalysts immobilized on cellulosic materials. Enzyme and Microbial Technology 15(7), 551-566.
Hanaki, K., Wantawin, C. and Ohgaki, S. (1990) Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor. Water Res 24(3), 289-296.
Hu, J., Li, D.P., Liu, Q., Tao, Y., He, X.H., Wang, X.M., Li, X.D. and Gao, P. (2009) Effect of organic carbon on nitrification efficiency and community composition of nitrifying biofilms. Journal of Environmental Sciences-China 21(3), 387-394.
Huang, X., Gui, P. and Qian, Y. (2001) Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor. Process Biochemistry 36(10), 1001-1006.
Karel, S.F., Libicki, S.B. and Robertson, C.R. (1985) The immobilization of whole cells: Engineering principles. Chemical Engineering Science 40(8), 1321-1354.

Kostov, K.G., Rocha, V., Koga-Ito, C.Y., Matos, B.M., Algatti, M.A., Honda, R.Y., Kayama, M.E. and Mota, R.P. (2010) Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surface and Coatings Technology 204(18–19), 2954-2959.
Leenen, E.J.T.M., DosSantos, V.A.P., Grolle, K.C.F., Tramper, J. and Wijffels, R.H. (1996) Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment. Water Res 30(12), 2985-2996.
Metcalf and Eddy, Inc. (1991) Wastewater Engineering:Treatment, Disposal, Reuse, 3rd Ed, Mc Graw-Hill, New York.
Owen, D.M., Amy, G.L., Chowdhury, Z.K., Paode, R., Mccoy, G. and Viscosil, K. (1995) Nom - characterization and treatability. Journal American Water Works Association 87(1), 46-63.
Safont, B., Vitas, A.I. and Penas, F.J. (2012) Isolation and characterization of phenol degrading bacteria immobilized onto cyclodextrin-hydrogel particles within a draft tube spouted bed bioreactor. Biochemical Engineering Journal 64(0), 69-75.
Sedlak, R. (1991) Phosphorus and nitrogen removal from municipal wastewater: Principles and practice. 2nd Eds., Lewis Publishers, New York.
Seitzinger, S., Harrison, J.A., Bohlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C. and Drecht, G.V. (2006) Denitrification across landscapes and waterscapes: A synthesis. Ecological Applications 16(6), 2064-2090.
Svec, F. and Gemeiner, P. (1996) Engineering aspects of carriers for immobilized biocatalysts, Biotechnology and Genetic Engineering Reviews, 13:1, 217-236.

Tatton, M.J., Archer, D.B., Powell, G.E. and Parker, M.L. (1989) Methanogenesis from ethanol by defined mixed continuous cultures. Applied and Environmental Microbiology 55(2), 440-445.
Verhagen, F.J.M. and Laanbroek, H.J. (1991) Competition for ammonium between nitrifying and heterotrophic bacteria in dual energy-limited chemostats. Applied and Environmental Microbiology 57(11), 3255-3263.
Winnicki, T., Szetela, R. and Wisniewski, J. (1982) Studies in environmental science. pawlowski, L. (ed), pp. 341-352, Elsevier.
Yang, P.Y., Cai, T. and Wang, M.-L. (1988) Immobilized mixed microbial cells for wastewater treatment. Biological Wastes 23(4), 295-312.
Yang, P.Y., Zhang, Z.Q. and Jeong, B.G. (1997) Simultaneous removal of carbon and nitrogen using an entrapped-mixed-microbial-cell process. Water Res 31(10), 2617-2625.
Yang P. Y., Cao. K. (2002) Entrapped mixed microbial cell process for combined secondary and tertiary wastewater treatment. Water Environment Research, Volume 74, Number 3, 226-234.
江晃榮,2000,「生物技術與污染防制(一)固定化微生物在廢水處理上之應用」,
工業污染防治技術叢書,廢水耗氧處理論著彙編(下),台北,頁31-40。
李公哲,2002,「廢棄物固化處理固化體溶出物之預測模式-含重金屬污泥固化處理後固化體溶出重金屬之預測模式」,行政院環境保護署。
胡玉明,2004,「固化劑」化學工業出版社。
陳國誠,1991,「廢水生物處理學」,台北茂昌。
李姿逸 (2012),環保固化材料應用於固定生物程序去除廢水碳與氮,國立臺灣大學環境工程學研究所,碩士論文。
劉佳鈞 (2013),包埋微生物細胞載體脫碳、硝化與脫硝反應動力之研究,國立臺灣大學環境工程學研究所,博士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60475-
dc.description.abstract微生物固定化技術為利用物理或化學方法將微生物固定於載體內部。與傳統活性污泥法比較,微生物固定化技術具有占地面積小、污泥產量低、污泥濃度高、污泥停留時間長及不需進行迴流等優點,且在適當的水力傳導特性下微生物固定化之載體其內外可以產生不同濃度之溶氧梯度,使載體表面可進行好氧反應如硝化作用,而內部則可進行厭氧之脫硝作用。
應用於微生物固定化之載體可分為天然及合成兩種,天然載體對生物毒性小但易受微生物分解且機械強度不高,而合成載體雖然機械強度高,但製作過程通常較為繁複且使用之化學藥劑可能對生物具有毒性。本研究使用一農業資源化材料所製成之固化粉末及經高溫燒結之輕質性骨材為微生物固定化之載體,其中固化粉為主要之載體材料,而輕質性骨材則為增加載體之水力傳導特性之用。
本研究先以水力傳導特性及抗壓強度實驗測試固定化微生物中各材料之最佳配比,經測試重量比1:2:2 (污泥:輕質性骨材:環保固化材料)之比例可得一水力傳導係數介於 0.01~0.001 cm/s 固定化微生物載體,該載體於水中養護7天後可達20 kg/cm2之抗壓強度。
溶出實驗第一天其化學需氧量(COD)溶出值大於100 mg/L,導電度大於2 mS/cm,pH值大於11.5,濁度則高於80 NTU,但除了pH在20天後溶出實驗之讀值仍高於10以外,其於各項參數之測值於5天後皆顯示溶出量已非常微小且趨於穩定。
操作參數實驗顯示水力停留時間(HRT)、水中溶氧量、碳氮比(C/N)、填充率及曝氣模式皆對去除效果有影響,其中HRT = 6 hr到HRT = 18 hr, COD去除率可提升6%,硝化效率可提升11%,總氮去除率可提升11%。溶氧由2~4 mg/L提升至飽和溶氧時,硝化效率可提升21%,總氮去除率可提升20 %。C/N 由4增加為 12時,硝化效率可提升12%,總氮去除率可提升11%。填充率由6.3%增加至22%時,硝化效率可提升40%,總氮去除率提升24%。而1:1之曝氣模式則比連續曝氣模式之總氮去除率提升4%。加入活性污泥可有效提升硝化效率及總氮去除率,在HRT = 6 hr時,添加活性污泥的穩定硝化效率可提升約16%,總氮去除率可提升超過30%。
zh_TW
dc.description.abstractCell immobilization is a technique of fixing microorganisms or living cells in a suitable matrix through physical or chemical reaction. In wastewater treatment, the technology of immobilization microbial cell dominant over conventional activated sludge processes in several ways, such as lower requirement of land space, lower biomass production, higher sludge concentration, longer sludge retention time and no sludge recycle. Moreover, when an adequate hydraulic conductivity is achieved, immobilized microbial cell will be able to carry out both aerobic and anaerobic reactions at the same time by using the difference of dissolved oxygen concentration at the surface and inside the cell.
The matrix of immobilized microbial cell can be categorized into two groups: natural and synthetic. Natural matrices posess the advantage of smaller biological toxicity but lacks mechanical strength and is easily decomposed by microorganism. Synthetic matrices possess a better performance in mechanical strength, but the process of production may be complex and the chemicals used during the production may not be environmental friendly. This study used agriculture waste coagulant and lightweight aggregates for the production of microbial cell. With agriculture waste coagulant as the main matrix, lightweight aggregates are added for improvement of hydraulic conductivity.
In this study, compression tests and permeability tests are carried out to determine the best ratio between activated slude, lightweight aggregate and agriculture waste coagulant. Results showed that at a ratio of 1:2:2 (activated slude: lightweight aggregate: agriculture waste coagulant), we can obtain a cell with hydraulic conductivity between 0.01~0.001 cm/s, and the compressive strength of 20 kg/cm2 can be achieved after 7 days of curing.
The dissolution test showed that the immobilized cells elute COD over 100 mg/L, conductivity over 2 mS/cm, turbidity over 80 NTU and pH over 11.5 after the first day. However, the elute concentration of COD, conductivity and turbidity are found to be stable after five days of test, pH remained over 10 after 20 days of elution.
Acclimation of microbial cells is found to be better by placing them in activated sludge than in synthetic wastewater, with COD removal rate increased from 90% to 95%,nitrification rate rate increased from 43% to 62%,TN removal rate increased from 42% to 55%.
Experiment of different operating parameters showed that HRT, dissolved oxygen, C/N ratio, packing ratio and aeration mode can affect the efficiency of nitrification and denitrification. Nitrification rate and TN removal rate were enhanced 11% and 11% respectively when HRT was adjusted from 6 hr to 18 hr. When dissolved oxygen increased from the range of 2~4 mg/L to saturation concentration, the nitrification rate was enhanced 21% and TN removal rate was enhanced 20%. When C/N ratio increased from 4 to 12, nitrification rate was enhanced 12% and TN removal rate was enhanced 11%. The increase of packing ratio from 6.3% to 22% yielded an increase in nitrification rate and TN removal rate, which were 40% and 24% higher, respectively. And the aeration mode of 1 hour on and 1 hour off resulted in a 4.4% increase in TN removal rate compared to continuous aeration. When combining with suspended acticated sludge, nitrification rate and TN removal rate were enhanced 16% and 30% respectively while HRT was set at 6 hr.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:19:11Z (GMT). No. of bitstreams: 1
ntu-102-R00541108-1.pdf: 1466158 bytes, checksum: 371976d5ff1bb31c35953be2595f672d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究項目 2
第二章 文獻回顧 3
2.1 環保材料 3
2.2 固化劑 5
2.2.1 固化劑簡介 5
2.2.2 環氧樹脂固化劑 5
2.2.3 混凝土固化劑 5
2.3 輕質性骨材 6
2.3.1 輕質性骨材簡介 6
2.3.2 輕質性骨材與水力傳導特性 6
2.4 固定化微生物技術 7
2.4.1 微生物固定化原理 9
2.4.2 微生物固定化載體特性 10
2.4.3 微生物固定化材料分類探討 11
2.4.4 固定化微生物除氮機制 13
第三章 材料與方法 16
3.1 實驗內容 16
3.2 試體製做 17
3.2.1 試體製做材料 17
3.2.2 試體製作儀器 17
3.2.3 試體製作步驟 17
3.3 水力傳導特性試驗 19
3.3.1 試驗目的 19
3.3.2 試驗原理 19
3.3.3 試驗步驟 20
3.4 抗壓強度試驗 21
3.4.1 實驗目的 21
3.4.2 實驗原理 21
3.4.3 實驗部驟 21
3.5 溶出實驗 22
3.5.1 實驗目的 22
3.5.2 實驗步驟 22
3.5.3 分析項目 22
3.5.4 分析方法 22
3.6 操作參數實驗 24
3.6.1 實驗目的 24
3.6.2 實驗儀器 24
3.6.3 實驗內容 25
3.6.4 水質分析 28
3.6.5 效能評估 30
第四章 結果與討論 31
4.1 微生物固化載體基本特性分析 31
4.1.1 水力傳導特性實驗結果 31
4.1.2 抗壓強度實驗 34
4.1.3 溶出實驗 35
4.2 操作參數實驗 39
4.2.1 固定微生物化載體及槽體基本特性分析 39
4.2.2 不同水力停留時間實驗 41
4.2.3 不同溶氧濃度實驗 44
4.2.4 不同碳氮比實驗 47
4.2.5 不同污泥濃度試驗 50
4.2.6 曝氣模式試驗 53
4.2.7 活性污泥搭配微生物固定化載體實驗 57
第五章 結論與建議 60
5.1 結論 60
5.2 建議 61
參考文獻 62
附錄 66
dc.language.isozh-TW
dc.subject固定化微生物技術zh_TW
dc.subject綠色材料zh_TW
dc.subject硝化zh_TW
dc.subject脫硝zh_TW
dc.subject除氮zh_TW
dc.subjectdenitrificationen
dc.subjectgreen materialen
dc.subjectnitrificationen
dc.subjectnitrogen removalen
dc.subjectImmobilized microbial cellen
dc.title環保固化材料結合輕質性骨材應用於固定化生物程序去除廢水碳與氮zh_TW
dc.titleUse of Green Carrier and Lightweight Agreggate in Immobilized Biological Process for Removing Carbon and Nitrogen from Wastewateren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee康佩群(Andy P. K. Hong),林郁真,吳忠信
dc.subject.keyword固定化微生物技術,綠色材料,硝化,脫硝,除氮,zh_TW
dc.subject.keywordImmobilized microbial cell,green material,nitrification,denitrification,nitrogen removal,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved