Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張富雄(Fu-Hsiung Chang)
dc.contributor.authorKuang-Hui Chenen
dc.contributor.author陳光輝zh_TW
dc.date.accessioned2021-06-16T10:18:56Z-
dc.date.available2013-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationAlexandre, J., Batteux, F., Nicco, C., Chereau, C., Laurent, A., Guillevin, L., Weill, B., and Goldwasser, F. (2006). Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. International Journal of Cancer 119, 41-48.
Aramaki, Y., Takano, S., and Tsuchiya, S. (2001). Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Archives of Biochemistry and Biophysics 392, 245-250.
Awasthi, V.D., Garcia, D., Klipper, R., Goins, B.A., and Phillips, W.T. (2004). Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)-distearoylphosphatidylethanolamine on distribution and circulation kinetics. The Journal of Pharmacology and Experimental Therapeutics 309, 241-248.
Balazs, D.A., and Godbey, W. (2011). Liposomes for use in gene delivery. Journal of Drug Delivery 2011, 1-12.
Bey, E.A., Bentle, M.S., Reinicke, K.E., Dong, Y., Yang, C.R., Girard, L., Minna, J.D., Bornmann, W.G., Gao, J., and Boothman, D.A. (2007). An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by beta-lapachone. Proceedings of the National Academy of Sciences of the United States of America 104, 11832-11837.
Biswas, S.K., and Mantovani, A. (2010). Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11, 889-896.
Boktov, J., Hirsch-Lerner, D., and Barenholz, Y. (2007). Characterization of the interplay between the main factors contributing to lipoplex-mediated transfection in cell cultures. The Journal of Gene Medicine 9, 884-893.
Choi, J., Kim, H.Y., Ju, E.J., Jung, J., Park, J., Chung, H.K., Lee, J.S., Park, H.J., Song, S.Y., Jeong, S.Y., et al. (2012). Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 33, 4195-4203.
D'Acremont, V., Herzog, C., and Genton, B. (2006). Immunogenicity and Safety of a Virosomal Hepatitis A Vaccine (Epaxal R) in the Elderly. Journal of Travel Medicine 13, 78-83.
Davis, M.E., Chen, Z.G., and Shin, D.M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery 7, 771-782.
Farhood, H., Bottega, R., Epand, R.M., and Huang, L. (1992). Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochimica et Biophysica Acta (BBA) - Biomembranes 1111, 239-246.
Farhood, H., Serbina, N., and Huang, L. (1995). The role of dioleoyl phosphatidylethanolamine (DOPE) in cationic liposome mediated gene transfer. Biochimica et Biophysica Acta 1235, 289-295.
Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., Northrop, J.P., Ringold, G.M., and Danielsen, M. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences of the United States of America 84, 7413-7417.
Filion, M.C., and Phillips, N.C. (1997). Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochimica et Biophysica Acta 1329, 345-356.
Fulton, A.M., and Chong, Y.C. (1992). The role of macrophage-derived TNFα in the induction of sublethal. Carcinogenesis 13, 77-81.

Gao, X., and Huang, L. (1991). A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochemical and Biophysical Research Communications 179, 280-285.
George, A.J., Thomas, W.G., and Hannan, R.D. (2010). The renin-angiotensin system and cancer: old dog, new tricks. Nature Reviews Cancer 10, 745-759.
Giaccone, G., and Pinedo, H.M. (1996). Drug Resistance. The Oncologist 1, 82-87.
Hafez, I.M., Maurer, N., and Cullis, P.R. (2001). On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Therapy 8, 1188-1196.
Herzog, C., Hartmann, K., Kunzi, V., Kursteiner, O., Mischler, R., Lazar, H., and Gluck, R. (2009). Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine 27, 4381-4387.
Kamps, J.A., Koning, G.A., Velinova, M.J., Morselt, H.W., Wilkens, M., Gorter, A., Donga, J., and Scherphof, G.L. (2000). Uptake of Long-Circulating Immunoliposomes, Directed Against Colon Adenocarcinoma Cells, by Liver Metastases of Colon Cancer. Journal of Drug Targeting 8, 235-245.
Karanth, H., and Murthy, R.S. (2007). pH-sensitive liposomes--principle and application in cancer therapy. The Journal of Pharmacy and Pharmacology 59, 469-483.
Karmali, P.P., and Chaudhuri, A. (2007). Cationic liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Medicinal Research Reviews 27, 696-722.
Klibanova, A.L., Maruyamaa, K., Torchilinb, V.P., and Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Letters 268, 235-237.

Lee, T.W., Matthews, D.A., and Blair, G.E. (2005). Novel molecular approaches to cystic fibrosis gene therapy. Biochemical Journal 387, 1-15.
Leventis, R., and Silvius, J.R. (1990). Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles. Biochimica et Biophysica Acta (BBA) - Biomembranes 1023, 124-132.
Liu, Q., Yi, W.J., Zhang, Y.M., Zhang, J., Guo, L., and Yu, X.Q. (2013). Biotinylated cyclen-contained cationic lipids as non-viral gene delivery vectors. Chemical Biology & Drug Design 2013, 1-8.
Lonez, C., Lensink, M.F., Vandenbranden, M., and Ruysschaert, J.M. (2009). Cationic lipids activate cellular cascades. Which receptors are involved? Biochimica et Biophysica Acta 1790, 425-430.
Lonez, C., Vandenbranden, M., and Ruysschaert, J.M. (2012). Cationic lipids activate intracellular signaling pathways. Advanced Drug Delivery Reviews 64, 1749-1758.
Ma, B., Zhang, S., Jiang, H., Zhao, B., and Lv, H. (2007). Lipoplex morphologies and their influences on transfection efficiency in gene delivery. Journal of Controlled Release 123, 184-194.
Maurer, N., Mori, A., Palmer, L., Monck, M.A., Mok, K.W., Mui, B., Akhong, Q.F., and Cullis, P.R. (1999). Lipid-based systems for the intracellular delivery of genetic drugs. Molecular Membrane Biology 16, 129-140.
Mochizuki, S., Kanegae, N., Nishina, K., Kamikawa, Y., Koiwai, K., Masunaga, H., and Sakurai, K. (2013). The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochimica et Biophysica Acta 1828, 412-418.

Ouali, M., Ruysschaert, J.M., Lonez, C., and Vandenbranden, M. (2007). Cationic lipids involved in gene transfer mobilize intracellular calcium. Molecular Membrane Biology 24, 225-232.
Park, J.W., Kirpotin, D.B., Hong, K., Shalaby, R., Shao, Y., Nielsen, U.B., Marks, J.D., Papahadjopoulos, D., and Benz, C.C. (2001). Tumor targeting using anti-her2 immunoliposomes. Journal of Controlled Release 6, 95-113.
Petros, R.A., and DeSimone, J.M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery 9, 615-627.
Pinnaduwage, P., Schmitt, L., and Huang, L. (1989). Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells. Biochimica et Biophysica Acta 985, 33-37.
Romoren, K., Fjeld, X.T., Poleo, A.B., Smistad, G., Thu, B.J., and Evensen, O. (2005). Transfection efficiency and cytotoxicity of cationic liposomes in primary cultures of rainbow trout (Oncorhynchus mykiss) gill cells. Biochimica et Biophysica Acta 1717, 50-57.
Srinivasan, C., and Burgess, D.J. (2009). Optimization and characterization of anionic lipoplexes for gene delivery. Journal of Controlled Release 136, 62-70.
Stegmann, T., Morselt, H.W., Booy, F.P., van Breemen, J.F., Scherphof, G., and Wilschut, J. (1987). Functional reconstitution of influenza virus envelopes. The EMBO Journal 6, 2651-2659.
Sun, S., Wang, M., Alberti, K.A., Choy, A., and Xu, Q. (2013). DOPE facilitates quaternized lipidoids (QLDs) for in vitro DNA delivery. Nanomedicine : Nanotechnology, Bology, and Medicine 2013, 1-6.

Takano, S., Aramaki, Y., and Tsuchiya, S. (2001). Lipoxygenase may be involved in cationic liposome-induced macrophage apoptosis. Biochemical and Biophysical Research Communications 288, 116-120.
Tanaka, T., Legat, A., Adam, E., Steuve, J., Gatot, J.S., Vandenbranden, M., Ulianov, L., Lonez, C., Ruysschaert, J.M., Muraille, E., et al. (2008). DiC14-amidine cationic liposomes stimulate myeloid dendritic cells through Toll-like receptor 4. European Journal of Immunology 38, 1351-1357.
Templeton, N.S. (2002). Cationic Liposome-mediated Gene Delivery In vivo. Bioscience Reports 22, 283-296.
Thevenot, P., Hu, W.J., and Tang, P. (2008). Surface chemistry influences implant biocompatibility. Current Topics in Medicinal Chemistry 8, 270-280.
Torchilin, V.P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery 4, 145-160.
van Meer, G., Voelker, D.R., and Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nature reviews Molecular Cell Biology 9, 112-124.
von Deutsch, A.W., Mitchell, C.D., Williams, C.E., Dutt, K., Silvestrov, N.A., Klement, B.J., Abukhalaf, I.K., and von Deutsch, D.A. (2005). Polyamines protect against radiation-induced oxidative stress. Gravitational and Space Biology 18, 109-110.
Wang, Y.X., Robertson, J.L., Spillman Jr., W.B., and Claus, R.O. (2004). Effects of the Chemical Structure and the Surface Properties of Polymeric Biomaterials on Their Biocompatibility. Pharmaceutical Research 21, 1362-1373.
Wasungu, L., and Hoekstra, D. (2006). Cationic lipids, lipoplexes and intracellular delivery of genes. Journal of Controlled Release 116, 255-264.

Wei, Y.H., Lu, C.Y., Lee, H.C., Pang, C.Y., and Ma, Y.S. (1998). Oxidative Damage and Mutation to Mitochondrial DNA and Age-dependent Decline of Mitochondrial Respiratory Function. Annals of the New York Academy of Sciences 20, 155-170.
Wilmar, A., Lonez, C., Vermeersch, M., Andrianne, M., Perez-Morga, D., Ruysschaert, J.M., Vandenbranden, M., Leo, O., and Temmerman, S.T. (2012). The cationic lipid, diC14 amidine, extends the adjuvant properties of aluminum salts through a TLR-4- and caspase-1-independent mechanism. Vaccine 30, 414-424.
Wrobel, I., and Collins, D. (1995). Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochimica et Biophysica Acta 1235, 296-304.
Yan, W., Chen, W., and Huang, L. (2007). Mechanism of adjuvant activity of cationic liposome: phosphorylation of a MAP kinase, ERK and induction of chemokines. Molecular Immunology 44, 3672-3681.
Yao, L., Daniels, J., Wijesinghe, D., Andreev, O.A., and Reshetnyak, Y.K. (2013). pHLIP(R)-mediated delivery of PEGylated liposomes to cancer cells. Journal of Controlled Release 167, 228-237.
Yao, Y., Huang, C., Li, Z.F., Wang, A.Y., Liu, L.Y., Zhao, X.G., Luo, Y., Ni, L., Zhang, W.G., and Song, T.S. (2009). Exogenous phosphatidylethanolamine induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway. World Journal of Gastroenterology 15, 1751-1758.
Zhai, Z., Gomez-Mejiba, S.E., Gimenez, M.S., Deterding, L.J., Tomer, K.B., Mason, R.P., Ashby, M.T., and Ramirez, D.C. (2012). Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide. Free Radical Biology & Medicine 53, 172-181.

Zuhorn, I.S., Bakowsky, U., Polushkin, E., Visser, W.H., Stuart, M.C., Engberts, J.B., and Hoekstra, D. (2005). Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Molecular Therapy : the Journal of the American Society of Gene Therapy 11, 801-810.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60466-
dc.description.abstract奈米脂微粒在生醫產業上的應用很廣泛,依照需求的不同而可以在奈米脂微粒上進一步地修飾,而產生不同的功能。其中以正價脂質為主體的正價奈米脂微粒,利用帶電性與質體DNA或是siRNA結合,而形成的脂質體-DNA複合物 (lipoplex),常作為良好的轉染試劑。除了正價脂質以外,正價奈米脂微粒的組成通常會與不同種類的中性脂質依不同比例混合,像是膽固醇 (cholesterol) 或者是磷脂質DOPE (dioleylphosphatidylethanolamine)。不管在實驗室或者是產業上,正價奈米脂微粒的崛起,不得不讓科學家們去正視正價奈米脂微粒對於細胞生理上的影響,因此許多文獻開始探討正價奈米脂微粒對細胞造成毒性的研究,然而主要研究方向集中在正價脂質上,對於中性脂質的探討卻不多。
DOPE被稱為輔助者脂質 (helper lipid),由於其本身錐狀的結構,使得細胞內體膜產生不穩定的情況,進而使含有DOPE的正價奈米脂微粒,所承載的DNA或者是藥物可以順利的進入到細胞內,增加藥物效用或轉染的效率。因此,像是Lipofetamine 2000與Lipofectin這兩種轉染試劑的組成中都含有DOPE。先前研究曾指出含有DOPE的正價奈米脂微粒,對細胞造成較大的毒性,然而DOPE對細胞造成那些影響,以及它作用的詳細機制,目前尚未釐清。
本論文利用正價脂質GEC-chol{3β-[N-(2-guanidinoethyl)carbamoyl]choleste
-rol}、DOTAP (1,2-dioleoyl-3-trimethyl-ammonium-propane),分別與中性脂質cholesterol與DOPE合成兩組正價奈米脂微粒,GCC、GCE與DOC、DOE。利用這四種奈米脂微粒,處理小鼠巨噬細胞RAW264.7與人類子宮頸上皮癌細胞HeLa,探討細胞吞噬的效率、細胞毒性、活性氧自由基產生的量以及細胞膜受損程度,進一步驗證含有DOPE的奈米脂微粒對細胞造成的傷害,確實比膽固醇的組別還高。除此之外,中性脂質的不同,使得GCC與GCE在細胞中的螢光分布有所差異;另外發現細胞長時間吞噬正價奈米脂微粒後,會將過多的膽固醇釋放到胞外,而DOPE卻沒有這樣的情形。
本論文除了進一步探討含有DOPE正價奈米脂微粒的細胞毒性,同時也在中性脂質膽固醇與DOPE之間特性的差異,有了新的發現,並且對於DOPE在細胞毒理以及生理上有更深的了解。
zh_TW
dc.description.abstractCationic liposomes have been referred to an effective carrier of DNA, siRNA , antigen or drug in therapeutics as well as biotechnology. They usually compose of cationic lipid and neural lipid, such as cholesterol or dioleylphosphatidylethanolamine (DOPE). Because of its wide use in laboratory and clinical, the toxicity of cationic liposome must be clearly investigated. However, most researches were focused on cytotoxicity of cationic lipid rather than neutral lipid.
DOPE is a common helper lipid in liposomes due to its fusogenic property. The structure of DOPE is conical shape which can destabilize the membrane bilayer of plasma membrane or endosome so that the cargo incorporated into liposomes releases efficiently into cytosol. As a result, DOPE can greatly increase the transfection efficiency of cationic liposomes. Therefore, several drugs and transfection reagents, such as lipofectamine 2000 and lipofectin, are formed with DOPE. In previous study, the formulation with different cationic lipids and DOPE resulted in a high toxicity toward macrophages. The toxicity is reduced by replacement of DOPE with dipalmitoylphosphatidylcholine (DPPC). Nevertheless, the mechanism how DOPE involved in cell toxicity is not clear so far.
In this research, cholesterol-based cationic lipid GEC-chol and DOTAP were incorporated with DOPE (termed as GCE or DOE) or cholesterol (termed as GCC or DOC) respectively. Different kinds of liposomes shown above were investigated to influence cells such as cellular uptake, viability, reactive oxygen series production and cellular membrane damage using mouse macrophages RAW 264.7 and human cervical epithelial cancer cells HeLa. Results showed that the cytotoxicity of DOPE-loaded cationic liposomes were higher than cholesterol-loaded cationic liposomes. In addition, intracellular fluorescence localization between GCC and GCE were different and extra cholesterol was pumped out from RAW264.7, but DOPE not.
In conclusion, the distinguishing characteristics between cholesterol and DOPE in cationic liposomes and the significance of DOPE in toxicology, pharmacology or physiology are revealed.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:56Z (GMT). No. of bitstreams: 1
ntu-102-R00442034-1.pdf: 8218452 bytes, checksum: 8b5cb4d4be0f739146bfe27839eefc1d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
第一章 緒論 1
1.1 奈米脂微粒的應用與發展 1
1.2 奈米脂微粒的組成 1
1.2.1 正價脂質的結構與特性 2
1.2.2 中性脂質的結構與特性 3
1.2.3 DOPE特性介紹 3
1.3 奈米脂微粒的毒性 4
1.3.1 正價脂質對細胞之毒性與影響 4
1.3.2 含有DOPE的奈米脂微粒對細胞之毒性 5
1.4 研究動機與目的 6
第二章 實驗材料與方法 7
2.1 實驗材料 7
2.1.1 細胞株 7
2.1.2 脂質 7
2.1.3 藥品 7
2.1.4 儀器 8
2.2 實驗方法 9
2.2.1 奈米脂微粒製備 9
2.2.2 奈米脂微粒粒徑大小、表面電位之分析 10
2.2.3 利用流式細胞儀分析不同組成奈米脂微粒之細胞吞噬效率分析 10
2.2.4 不同組成奈米脂微粒對於細胞之活性分析 10
2.2.5 不同組成奈米脂微粒對於細胞之活性氧自由基分析 11
2.2.6 利用流式細胞儀分析不同組成奈米脂微粒對於細胞膜損害程度分析 11
2.2.7 利用雷射共軛焦顯微鏡分析GCC與GCE在細胞內螢光分布分析 12
2.2.8 中性脂質Cholesterol與DOPE於細胞間擴散之分析 13
第三章 實驗結果 14
3.1 不同組成之奈米脂微粒之製備特性、粒徑大小及表面電位分析 14
3.2 不同組成之奈米脂微粒之細胞吞噬效率分析 15
3.3 不同組成奈米脂微粒對於細胞之活性分析 16
3.4 不同組成奈米脂微粒對於細胞之活性氧自由基分析 17
3.5 不同組成奈米脂微粒對於細胞膜損害程度分析 18
3.6 比較GCC與GCE在細胞內螢光分布 19
3.7 中性脂質Cholesterol與DOPE於細胞間擴散之分析 21
第四章 討論 23
4.1 不同組成之奈米脂微粒製備特性、吞噬效率與細胞毒性之探討 23
4.2 不同組成之奈米脂微粒對細胞產生活性氧自由基與細胞膜受損之探討 24
4.3 中性脂質Cholesterol與DOPE於細胞間擴散之探討 24
4.4 GCC 與GCE在細胞內螢光分布探討 25
第五章 圖表與說明 27
表一、正價奈米脂微粒GCC、GCE,DOC、DOE之粒徑及表面電荷分析 27
圖一、GCC、GCE;DOC、DOE的粒徑分析圖 28
圖二、不同濃度正價奈米脂微粒處理之細胞吞噬率 31
圖三、不同濃度GCC、GCE處理細胞之存活率 32
圖四、不同濃度DOC、DOE處理細胞之存活率 33
圖五、不同濃度GCC、GCE處理細胞活性氧自由基量的變化 35
圖六、不同濃度GCC、GCE處理細胞之細胞膜受損程度 36
圖七、GCC與GCE在細胞間不同螢光分布之探討 39
圖八、不同中性脂質比例螢光正價奈米脂微粒之分布 41
圖九、中性脂質Cholesterol與DOPE於細胞間擴散之分析 44
第六章 參考文獻 45
dc.language.isozh-TW
dc.subject毒性zh_TW
dc.subject膽固醇zh_TW
dc.subject細胞活性zh_TW
dc.subject正價奈米脂微粒zh_TW
dc.subjectcationic liposomesen
dc.subjectcellular activityen
dc.subjectDOPEen
dc.subjectcholesterolen
dc.subjecttoxicityen
dc.title高量吞噬磷脂質DOPE對細胞活性之影響zh_TW
dc.titleInfluence of cellular activity by high-level treatment of phospholipid DOPE-loaded liposomesen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張明富(Ming-Fu Chang),林文澧(Win-Li Lin),梁碧惠(Pi-Hui Liang)
dc.subject.keyword正價奈米脂微粒,細胞活性,膽固醇,毒性,zh_TW
dc.subject.keywordcationic liposomes,cellular activity,DOPE,cholesterol,toxicity,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved