請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宏昀 | |
| dc.contributor.author | Cheng-Pang Chien | en |
| dc.contributor.author | 簡正邦 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:18:45Z | - |
| dc.date.available | 2014-08-20 | |
| dc.date.copyright | 2013-08-20 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | [1] Qualcomm, “1000x: More small cells,” Qualcomm Document Center, June 2012.
[2] J. Zhang and G. de la Roche, Femtocells: Technologies and Deployment. John Wiley & Sons, Dec. 2009. [3] Femto Forum. Online Available at: http://www.femtoforum.org/ctia/about-femto-forum/ [4] Small Cell Forum, Small Cell – What’s the Big Idea? Online Available at: http://www.smallcellforum.org [5] N. Shetty, S. Parekh, and J. Walrand, “Economics of femtocells,” in Proceedings of IEEE Global Telecommunications Conference, Dec. 2009. [6] P. Lin, J. Zhang, Y. Chen, and Q. Zhang, “Macro-femto heterogeneous network deployment and management: from business models to technical solutions,” IEEE Wireless Communications, vol. 18, no. 3, pp. 64–70, June 2011. [7] T. Zahir, K. Arshad, A. Nakata, and K. Moessner, “Interference management in femtocells,” IEEE Communications Surveys Tutorials, vol. PP, no. 99, pp.1–19, 2012. [8] V. Chandrasekhar and J. Andrews, “Spectrum allocation in tiered cellular networks,” IEEE Transactions on Communications, vol. 57, no. 10, pp. 3059–3068, 2009. [9] V. Chandrasekhar, J. Andrews, T. Muharemovic, Z. Shen, and A. Gatherer, “Power control in two-tier femtocell networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp. 4316–4328, Aug. 2009. [10] G. de la Roche, A. Valcarce, D. Lopez-Perez, and J. Zhang, “Access control mechanisms for femtocells,” IEEE Communications Magazine, vol. 48, no. 1, pp. 33–39, Jan. 2010. [11] W. C. Cheung, T. Quek, and M. Kountouris, “Throughput optimization, spectrum allocation, and access control in two-tier femtocell networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 561–574, Apr. 2012. [12] J. Liu, T. Kou, Q. Chen, and H. Sherali, “Femtocell base station deployment in commercial buildings: A global optimization approach,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 652–663, Apr. 2012. [13] Scenarios and Requirements for Small Cell Enhancements for E-UTRA and E-UTRAN, 3GPP Std. TR 36.932, Rev. 12.0.0, Dec. 2012. [14] Qualcomm, “Neighborhood small cells for hyper-dense deployments: Taking HetNets to the next level,” Feb. 2013. [15] R. Razavi and H. Claussen, “Urban small cell deployments: Impact on the network energy consumption,” in Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Apr. 2012. [16] E. Altman, A. Kumar, C. Singh, and R. Sundaresan, “Spatial SINR games of base station placement and mobile association,” IEEE/ACM Transactions on Networking, vol. 20, no. 6, pp. 1856–1869, 2012. [17] Y. Tseng and C. Huang, “Analysis of femto base station network deployment,” IEEE Transactions on Vehicular Technology, vol. 61, no. 2, pp. 748–757, 2012. [18] Qualcomm Europe, “Range Expansion for Efficient Support of Heterogeneous Networks,” no. R1-083813, 2008. [19] G. J. Foschini and Z. Miljanic, “A simple distributed autonomous power control algorithm and its convergence,” IEEE Transactions on Vehicular Technology, vol. 42, no. 4, pp. 641–646, Nov. 1993. [20] R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE Journal on Selected Areas in Communications, vol. 13, no. 7, pp. 1341–1347, Sep. 1995. [21] Alcatel-Lucent, Small Cells: Coverage and capacity where it’s needed. Online Available at: http://www.alcatel-lucent.com/solutions/small-cells [22] Y.-S. Liang, W.-H. Chung, G.-K. Ni, I.-Y. Chen, H. Zhang, and S.-Y. Kuo, “Resource allocation with interference avoidance in OFDMA femtocell networks,” IEEE Transactions on Vehicular Technology, vol. 61, no. 5, pp. 2243–2255, June 2012. [23] D.-C. Oh, H.-C. Lee, and Y.-H. Lee, “Power control and beamforming for femtocells in the presence of channel uncertainty,” IEEE Transactions on Vehicular Technology, vol. 60, no. 6, pp. 2545–2554, 2011. [24] P. Xia, V. Chandrasekhar, and J. Andrews, “Open vs. closed access femtocells in the uplink,” IEEE Transactions on Wireless Communications, vol. 9, no. 12, pp. 3798–3809, 2010. [25] H.-S. Jo, P. Xia, and J. Andrews, “Open, closed, and shared access femtocells in the downlink,” EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1, pp. 363–378, 2012. [26] Y. Kim, S. Lee, and D. Hong, “Performance analysis of two-tier femtocell networks with outage constraints,” IEEE Transactions on Wireless Communications, vol. 9, no. 9, pp. 2695–2700, 2010. [27] Amendment of the Commission’s Rules with Regard to Commercial Operations in the 3550-3650 MHz Band, FCC Notice of Proposed Rulemaking and Order, Dec. 2012. [28] A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Transactions on Communications, vol. 45, no. 10, pp. 1218–1230, Oct. 1997. [29] S. Parsaeefard, A.-R. Sharafat, and M. Rasti, “Robust probabilistic distributed power allocation by chance constraint approach,” in Proceedings of IEEE Personal Indoor and Mobile Radio Communications (PIMRC), Sep. 2010. [30] S.-E. Wei, C.-H. Chang, Y.-E. Lin, H.-Y. Hsieh, and H.-J. Su, “Formulating and solving the femtocell deployment problem in two-tier heterogeneous networks,” in Proceedings of IEEE International Conference on Communications (ICC), June 2012. [31] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohme, “Coalition structure generation with worst case guarantees,” Artificial Intelligence, vol. 111, no. 1-2, pp. 209–238, 1999. [32] S. Sen, I. Sen, and P. S. Dutta, “Searching for optimal coalition structures,” in Proceedings of IEEE International Conference on Multiagent Systems, July 2000. [33] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci, “An anytime algorithm for optimal coalition structure generation,” Journal of Artificial Intelligence Research, vol. 34, pp. 521–567, Apr. 2009. [34] N. Mauro, T. Basile, S. Ferilli, and F. Esposito, “Coalition structure generation with GRASP,” Lecture Notes in Computer Science (Artificial Intelligence: Methodology, Systems, and Applications), vol. 6304, pp. 111–120, 2010. [35] H. Keinanen, “Simulated annealing for multi-agent coalition formation,” Lecture Notes in Computer Science (Agent and Multi-Agent Systems: Technologies and Applications), vol. 5559, pp. 30–39, 2009. [36] A. Srinivas and E. Modiano, “Joint node placement and assignment for throughput optimization in mobile backbone networks,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 5, pp. 975–985, 2012. [37] Y. Shi and T. Hou, “Optimal base station placement in wireless sensor networks,” ACM Transactions on Sensor Networks, vol. 5, no. 4, pp. 1–24, 2009. [38] RAN Improvements for Machine-Type Communications, 3GPP Std. TR 37.868, 2011. [39] Further Advancementsfor E-UTRA Physical Layer Aspects, 3GPP Std. TR 36.814, 2010. [40] LTE coverage enhancements (Release 11), 3GPP Std. TR 36.824, 2012. [41] C. James, “Australian homes are biggest in the world,” CommSec Transactions on Economics, pp. 1–4, Nov. 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60459 | - |
| dc.description.abstract | 異質網路下小型基地台的佈建近年來被視為提升覆蓋範圍與通道容量的核心技術,有別於傳統根據使用者即時的需求來佈建小型基地台,越來越多的研究提出更具管理性的佈建模型來權衡基地台性能與其佈建成本。由於小型基地台可以被佈建在屋頂或街燈上來服務鄰近的戶外使用者,以往相關文獻所提出的室內佈建策略將不再適用。此外,過去相關文獻對小型基地台所假設的隨機分佈模型也無法適用於任意網路拓樸。有鑑於此,本論文分別探討了在共享和獨立資源分配模型下,小型基地台在開放模式與封閉模式的最佳佈建策略。為了達到這個目的,我們透過最佳化小型基地台佈建位置與操作參數,來最大化不同服務質量需求的使用者數量。由於這個最佳化問題屬於混合整數及實數之非線性規劃,為了簡化其計算的複雜度,我們提出了一個可以隨意控制計算時間的演算法,把原本問題拆解為「群組形成」與「資源管理」的兩個子問題:群組形成子問題著重在找尋最佳的佈建地點以及服務範圍;而資源管理子問題則著重在控制傳輸功率以及合理地分配無線資源使每個使用者都能滿足其個別的服務質量需求。此外,本論文也將此佈建策略延伸擴展到另一個後最佳化問題,意即當所有佈建都已完成後,倘若使用者服務質量需求改變,抑或者有新的使用者加入現有網路,我們如何最小化新佈建的小型基地台來因應這個變化。最後,模擬的結果顯示本論文提出的佈建策略相較於其他佈建策略,更能有效地在計算複雜度與最佳化程度之間取得一個完美平衡。 | zh_TW |
| dc.description.abstract | Heterogeneous network with small cells has recently been regarded as a promising scenario for enhancing macrocell coverage and/or capacity in LTE-Advanced systems. While deployment of small cells has typically followed the bottom-up paradigm driven by the ad hoc demand of users, more and more studies have prompted a move towards a more managed deployment model for better tradeoff between performance and cost. Unlike related work that assumes a stochastic distribution model for small cells, in this thesis we consider the deployment problem for arbitrary wireless networks under different network scenarios, including shared and dedicated resource models as well as open and closed access modes for small cells. To proceed, we formulate an optimization problem for small cell deployment in an arbitrary network that involves determination of deployment locations and operation parameters to maximize the supported number of customers with QoS constraints. Since the formulated problem belongs to mixed-integer non-linear programming (MINLP), we propose an anytime algorithm that transforms the joint problem into a cluster formation sub-problem (involving location selection and cell coverage) and a resource management sub-problem (involving power control and resource allocation) for effectively solving all optimization variables in an iterative fashion. Finally, the proposed approach is extended for solving the post-optimization problem where QoS constraints and/or number of customers are changed after initial network planning. Compared with other approaches for small cell deployment, evaluation results show that the proposed algorithm can effectively solve the target problem while striking a better performance tradeoff between computation complexity and solution quality. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:18:45Z (GMT). No. of bitstreams: 1 ntu-102-R00942048-1.pdf: 3479561 bytes, checksum: 50e35b8868a78cba75d74c796c734181 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 5 2.1 Heterogeneous Network With Small Cells . . . . . . . . . . . . . . 5 2.1.1 Applications and Benefits . . . . . . . . . . . . . . . . . . . 5 2.1.2 Coverage and Cell Association . . . . . . . . . . . . . . . . 6 2.1.3 High Density and Interference Control . . . . . . . . . . . . 7 2.2 Small Cell Deployment Model . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Qualcomm Neighborhood Small Cells . . . . . . . . . . . . 8 2.2.2 Alcatel-Lucent 9360 Small Cell Solution . . . . . . . . . . . 9 2.3 Centralized Clustering Algorithm Based on Simulated Annealing . 10 2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 3 NETWORK SCENARIO AND PROBLEM FORMULATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Network Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Shared Resource Model in Closed Access Mode . . . . . . . 16 3.2.2 Shared Resource Model in Open Access Mode . . . . . . . 20 3.3 Special Case for Orthogonal Channel Deployment . . . . . . . . . 22 3.3.1 Dedicated Resource Model . . . . . . . . . . . . . . . . . . 23 3.3.2 Equal Resource Allocation . . . . . . . . . . . . . . . . . . 24 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CHAPTER 4 SOLVING THE OPTIMIZATION PROBLEM . . 27 4.1 Inner Resource Management Sub-Problem . . . . . . . . . . . . . . 27 4.1.1 Joint Power Control and Resource Allocation . . . . . . . . 27 4.1.2 An Iterative Algorithm for Power and Allocation Update . 29 4.1.3 Efficient Search Strategy to Find the Critical Macro User . 31 4.1.4 Convergence Property for Algorithm 1 . . . . . . . . . . . . 36 4.2 Outer Cluster Formation Sub-Problem . . . . . . . . . . . . . . . . 37 4.2.1 Coalition Structure Generation . . . . . . . . . . . . . . . . 37 4.2.2 An Anytime Search Algorithm . . . . . . . . . . . . . . . . 38 4.2.3 Analysis of Cluster Structure Generation Problem . . . . . 42 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 CHAPTER 5 POST-DEPLOYMENT OPTIMIZATION . . . . . 45 5.1 Network Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CHAPTER 6 PERFORMANCE EVALUATION . . . . . . . . . . 52 6.1 Evaluation of the Proposed Algorithm . . . . . . . . . . . . . . . . 53 6.1.1 Iterative Update for the Resource Management Sub-Problem 53 6.1.2 Runtime Complexity for Searching the Critical Macro User 54 6.2 Post-Deployment Optimization . . . . . . . . . . . . . . . . . . . . 55 6.2.1 Change in the Data Rate Requirement . . . . . . . . . . . 55 6.2.2 Change in Network Topology . . . . . . . . . . . . . . . . . 56 6.2.3 Additional Femto BSs Deployment . . . . . . . . . . . . . . 57 6.3 Dedicated vs. Shared Resource Models . . . . . . . . . . . . . . . 58 6.3.1 Setup for Supporting the Macro User . . . . . . . . . . . . 59 6.3.2 Impact of Resource Division Ratio . . . . . . . . . . . . . . 59 6.3.3 Impact of the Macro BS Service Area . . . . . . . . . . . . 62 6.3.4 Contours of Support . . . . . . . . . . . . . . . . . . . . . . 62 CHAPTER 7 CONCLUSION AND FUTURE WORK . . . . . . 64 7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 | |
| dc.language.iso | en | |
| dc.subject | 資源管理 | zh_TW |
| dc.subject | 群組形成 | zh_TW |
| dc.subject | 小型基地台 | zh_TW |
| dc.subject | Small cells | en |
| dc.subject | cluster formation | en |
| dc.subject | resource allocation | en |
| dc.subject | power control | en |
| dc.subject | coalition structure generation | en |
| dc.title | 任意網路拓樸下小型基地台佈建之最佳化 | zh_TW |
| dc.title | Optimizing Small Cell Deployment in Arbitrary Wireless Networks with Minimum Service Rate Constraints | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 魏宏宇,高榮鴻,李佳翰 | |
| dc.subject.keyword | 小型基地台,群組形成,資源管理, | zh_TW |
| dc.subject.keyword | Small cells,cluster formation,resource allocation,power control,coalition structure generation, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
