請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60454完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚(Chia-Yang Chen) | |
| dc.contributor.author | Shin-Hung Liu | en |
| dc.contributor.author | 劉信宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:18:37Z | - |
| dc.date.available | 2015-09-30 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | References
1. Peter M. Lorz FKT, Walter Enke, Rudolf Jackh, Naresh Bhargava, Wolfgang Hillesheim: Phthalic Acid and Derivatives. Ullmann's Encyclopedia of Industrial Chemistry 2007. 2. Heudorf U, Mersch-Sundermann V, Angerer J: Phthalates: toxicology and exposure. International Journal of Hygiene and Environmental Health 2007, 210(5):623-634. 3. Wittassek M, Koch HM, Angerer J, Bruning T: Assessing exposure to phthalates - the human biomonitoring approach. Molecular Nutrition and Food Research 2011, 55(1):7-31. 4. Hauser R, Calafat AM: Phthalates and human health. Occupational and Environmental Medicine 2005, 62(11):806-818. 5. Latini G: Monitoring phthalate exposure in humans. Clinica Chimica Acta 2005, 361(1-2):20-29. 6. Just AC, Whyatt RM, Perzanowski MS, Calafat AM, Perera FP, Goldstein IF, Chen Q, Rundle AG, Miller RL: Prenatal exposure to butylbenzyl phthalate and early eczema in an urban cohort. Environmental Health Perspective 2012, 120(10):1475-1480. 7. Larsson M, Hagerhed-Engman L, Kolarik B, James P, Lundin F, Janson S, Sundell J, Bornehag CG: PVC--as flooring material--and its association with incident asthma in a Swedish child cohort study. Indoor Air 2010, 20(6):494-501. 8. Kimber I, Dearman RJ: An assessment of the ability of phthalates to influence immune and allergic responses. Toxicology 2010, 271(3):73-82. 9. Koch HM, Calafat AM: Human body burdens of chemicals used in plastic manufacture. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2009, 364(1526):2063-2078. 10. Wittassek M, Angerer J: Phthalates: metabolism and exposure. International Journal of Andrology 2008, 31(2):131-138. 11. Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, Hurtz D, 3rd, Calafat AM, Needham LL, Brock JW: Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Archives in Toxicology 2003, 77(10):561-567. 12. Silva MJ, Samandar E, Preau JL, Jr., Reidy JA, Needham LL, Calafat AM: Quantification of 22 phthalate metabolites in human urine. Journal of Chromatogr B 2007, 860(1):106-112. 13. Koch HM, Gonzalez-Reche LM, Angerer J: On-line clean-up by multidimensional liquid chromatography-electrospray ionization tandem mass spectrometry for high throughput quantification of primary and secondary phthalate metabolites in human urine. Journal of Chromatogr B 2003, 784(1):169-182. 14. Yusa V, Ye X, Calafat AM: Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens. Trends in Analytical Chemistry 2012, 38:129-142. 15. Shelby MD: NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Ntp Cerhr Monograph 2008(22):v, vii-ix, 1-64. 16. Donohue KM, Miller RL, Perzanowski MS, Just AC, Hoepner LA, Arunajadai S, Canfield S, Resnick D, Calafat AM, Perera FP et al: Prenatal and postnatal bisphenol A exposure and asthma development among inner-city children. The Journal of allergy and clinical immunology 2013, 131(3):736-742 e736. 17. Liao C, Kannan K: Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography-tandem mass spectrometry. Environmental science & technology 2012, 46(9):5003-5009. 18. Fox SD, Falk RT, Veenstra TD, Issaq HJ: Quantitation of free and total bisphenol A in human urine using liquid chromatography-tandem mass spectrometry. Journal of Separetion Science 2011, 34(11):1268-1274. 19. Linda-Jo S, Sarah A L: Bisphenol A (BPA) in Plastics and Possible Human Health Effects Congressional Research Service 2010. 20. Volkel W, Kiranoglu M, Fromme H: Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment. Toxicology Letters 2008, 179(3):155-162. 21. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W: Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chemical Research in Toxicology 2002, 15(10):1281-1287. 22. Dekant W, Volkel W: Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicology and Applied Pharmacology 2008, 228(1):114-134. 23. Lacroix MZ, Puel S, Collet SH, Corbel T, Picard-Hagen N, Toutain PL, Viguie C, Gayrard V: Simultaneous quantification of bisphenol A and its glucuronide metabolite (BPA-G) in plasma and urine: applicability to toxicokinetic investigations. Talanta 2011, 85(4):2053-2059. 24. Volkel W, Bittner N, Dekant W: Quantitation of bisphenol A and bisphenol A glucuronide in biological samples by high performance liquid chromatography-tandem mass spectrometry. Drug Metabolism and Disposition 2005, 33(11):1748-1757. 25. Perez F, Llorca M, Farre M, Barcelo D: Automated analysis of perfluorinated compounds in human hair and urine samples by turbulent flow chromatography coupled to tandem mass spectrometry. Analytical and bioanalytical chemistry 2012, 402(7):2369-2378. 26. Department of Health and Human Service, Center for Disease Control and Prevention: Fourth National Report on Human Exposure to Environmental Chemicals. 2009. 27. Wang IJ, Hsieh WS, Chen CY, Fletcher T, Lien GW, Chiang HL, Chiang CF, Wu TN, Chen PC: The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environmental research 2011, 111(6):785-791. 28. Grandjean P, Andersen EW, Budtz-Jorgensen E, Nielsen F, Molbak K, Weihe P, Heilmann C: Serum vaccine antibody concentrations in children exposed to perfluorinated compounds. Journal of the American Medical Association 2012, 307(4):391-397. 29. Koch HM, Bolt HM, Angerer J: Di(2-ethylhexyl)phthalate (DEHP) metabolites in human urine and serum after a single oral dose of deuterium-labelled DEHP. Archives of Toxicology 2004, 78(3):123-130. 30. Xia X, Chen X, Zhao X, Chen H, Shen M: Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environmental science & technology 2012, 46(22):12467-12475. 31. Taniyasu S, Kannan K, So MK, Gulkowska A, Sinclair E, Okazawa T, Yamashita N: Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. Journal of chromatography A 2005, 1093(1-2):89-97. 32. ATSDR: Toxicological Profile for polycyclic aromatic hydrocarbons. 1995. 33. Mizutani N, Nabe T, Ohtani Y, Han HY, Fujii M, Yoshino S, Hirayama T, Kohno S: Polycyclic Aromatic Hydrocarbons Aggravate Antigen-Induced Nasal Blockage in Experimental Allergic Rhinitis. Journal of Pharmacological Sciences 2007, 105(3):291-297. 34. Jung KH, Yan B, Moors K, Chillrud SN, Perzanowski MS, Whyatt RM, Hoepner L, Goldstein I, Zhang B, Camann D et al: Repeated exposure to polycyclic aromatic hydrocarbons and asthma: effect of seroatopy. Annals of allergy, asthma & immunology 2012, 109(4):249-254. 35. Kakimoto K, Toriba A, Ohno T, Ueno M, Kameda T, Tang N, Hayakawa K: Direct measurement of the glucuronide conjugate of 1-hydroxypyrene in human urine by using liquid chromatography with tandem mass spectrometry. J Chromatogr B 2008, 867(2):259-263. 36. Ketola RA, Hakala KS: Direct analysis of glucuronides with liquid chromatography-mass spectrometric techniques and methods. Current drug metabolism 2010, 11(7):561-582. 37. Tsai MJ, Kuo PL, Ko YC: The association between phthalate exposure and asthma. Kaohsiung Journal of Medical Sciences 2012, 28:S28-36. 38. Nakamura H, Hishinuma T, Suzuki N, Chiba S, Tsukamoto H, Takabatake M, Sawai T, Mitomo T, Inoue H, Matsumoto F et al: Difference in urinary 11-dehydro TXB2 and LTE4 excretion in patients with rheumatoid arthritis. Prostaglandins, leukotrienes, and essential fatty acids 2001, 65(5-6):301-306. 39. Rabinovitch N: Urinary leukotriene E4. Immunology and allergy clinics of North America 2007, 27(4):651-664. 40. Stanke-Labesque F, Pofelski J, Moreau-Gaudry A, Bessard G, Bonaz B: Urinary leukotriene E4 excretion: a biomarker of inflammatory bowel disease activity. Inflammatory bowel diseases 2008, 14(6):769-774. 41. Kato K, Silva MJ, Needham LL, Calafat AM: Determination of 16 phthalate metabolites in urine using automated sample preparation and on-line preconcentration/high-performance liquid chromatography/tandem mass spectrometry. Analytical Chemistry 2005, 77(9):2985-2991. 42. Koch HM, Lorber M, Christensen KL, Palmke C, Koslitz S, Bruning T: Identifying sources of phthalate exposure with human biomonitoring: Results of a 48h fasting study with urine collection and personal activity patterns. International Journal of Hygiene Environmental Health 2013. 43. Bouchet S, Chauzit E, Ducint D, Castaing N, Canal-Raffin M, Moore N, Titier K, Molimard M: Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clinica chimica acta; international journal of clinical chemistry 2011, 412(11-12):1060-1067. 44. Ahrens L, Xie Z, Ebinghaus R: Distribution of perfluoroalkyl compounds in seawater from northern Europe, Atlantic Ocean, and Southern Ocean. Chemosphere 2010, 78(8):1011-1016. 45. Fountain KJ, Yin Z, Diehl DM: Simultaneous analysis of morphine-related compounds in plasma using mixed-mode solid phase extraction and UltraPerformance liquid chromatography-mass spectrometry. Journal of separation science 2009, 32(13):2319-2326. 46. Armstrong M, Liu AH, Harbeck R, Reisdorph R, Rabinovitch N, Reisdorph N: Leukotriene-E4 in human urine: Comparison of on-line purification and liquid chromatography-tandem mass spectrometry to affinity purification followed by enzyme immunoassay. Journal of chromatography B 2009, 877(27):3169-3174. 47. Wu Y, Li LY, Henion JD, Krol GJ: Determination of LTE4 in human urine by liquid chromatography coupled with ionspray tandem mass spectrometry. Journal of Mass Spectrom 1996, 31(9):987-993. 48. Goen T, Dobler L, Koschorreck J, Muller J, Wiesmuller GA, Drexler H, Kolossa-Gehring M: Trends of the internal phthalate exposure of young adults in Germany--follow-up of a retrospective human biomonitoring study. International journal of hygiene and environmental health 2011, 215(1):36-45. 49. Guo Y, Wu Q, Kannan K: Phthalate metabolites in urine from China, and implications for human exposures. Environment international 2011, 37(5):893-898. 50. Lin S, Ku HY, Su PH, Chen JW, Huang PC, Angerer J, Wang SL: Phthalate exposure in pregnant women and their children in central Taiwan. Chemosphere 2011, 82(7):947-955. 51. Lee KH, Vermeulen R, Lenters V, Cho SH, Strickland PT, Kang D: Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children. International archives of occupational and environmental health 2009, 82(8):961-968. 52. Loccisano AE, Campbell JL, Jr., Andersen ME, Clewell HJ, 3rd: Evaluation and prediction of pharmacokinetics of PFOA and PFOS in the monkey and human using a PBPK model. Regulatory toxicology and pharmacology 2011, 59(1):157-175. 53. Loccisano AE, Campbell JL, Jr., Butenhoff JL, Andersen ME, Clewell HJ, 3rd: Comparison and evaluation of pharmacokinetics of PFOA and PFOS in the adult rat using a physiologically based pharmacokinetic model. Reproductive toxicology 2012, 33(4):452-467. 54. Loccisano AE, Longnecker MP, Campbell JL, Jr., Andersen ME, Clewell HJ, 3rd: Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages. Journal of toxicology and environmental health Part A 2013, 76(1):25-57. 55. Yeung LW, Taniyasu S, Kannan K, Xu DZ, Guruge KS, Lam PK, Yamashita N: An analytical method for the determination of perfluorinated compounds in whole blood using acetonitrile and solid phase extraction methods. Journal of chromatography A 2009, 1216(25):4950-4956. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60454 | - |
| dc.description.abstract | 鄰苯二甲酸酯(Phthalates)、雙酚A(Bisphenol A)、全氟碳化物(PFCs)和多環芳香烴等汙染物普遍存於日常生活環境當中。前三者為大量使用的工業原料,常見於個人保健用品、食品包裝和餐具之中,多環芳香烴則經由不完全燃燒所產生,汽機車引擎是日常暴露的主要來源。過往流行病學的文獻曾經報導個別類別汙染物的暴露與過敏之間的關聯性,但尚無相關研究同時評估或監測所有這些汙染物的暴露,以釐清何種汙染物對於健康效應最具關鍵性,抑或是共暴露效應之發生。本研究開發並驗證以負離子模式之電灑游離法(ESI-)作為質譜儀的游離源,搭配極致效能液相層析(UPLC-MS/MS)與同位素稀釋技術來定量尿液中四種鄰苯二甲酸酯代謝物、雙酚A葡萄糖苷酸、1-羥基芘葡萄糖苷酸、九種全氟碳化物及白三烯E4之檢驗方法,共16種化合物。
尿液樣本在經過離心後取150微升上清液以同體積之10 mM醋酸銨水溶液進行稀釋,並加入20微升的同位素標定內標準品(配製於甲醇中)。總共320微升的樣品通過96孔弱陰離子交換樹脂(WAX)固相萃取盤(μElution plate)進行萃取(預先通過100微升含有0.1%氨水的甲醇兩次以及200微升的Milli-Q純水),接著以200微升的2%甲酸水溶液和70%甲醇水溶液依序通過吸附劑,沖提出無法與離子交換樹脂產生交互作用的化合物,並以空氣通過吸附劑持續五分鐘使其乾燥;最後使用25微升含有0.1%氨水的甲醇進行四次沖提,沖提液以空氣吹至近乾(20分鐘)後使用100微升的甲醇回溶。最後進樣兩微升的樣品以UPLC-MS/MS進行分析,使用Ascentis Express C18管柱(50 x 2.1 mm, 2.6μm)搭配以下兩種流動相進行梯度流析:(A) 乙腈:水 = 90 : 10 (v/v), 0.04%乙酸、(B) 乙腈:水 = 5 : 95 (v/v), 0.04%乙酸。 所有待測物的偵測極限為 0.23 ng/mL – 6.54 ng/mL,此方法達到十億分之一的敏感度足以偵測大多數一般大眾之暴露量。大多數待測物的基質效應介於95% 到132%之間,除了雙酚A葡萄糖苷酸(637%)、1-羥基芘葡萄糖苷酸(189%)及白三烯E4(242%)三者較高,可能有離子增強(ion enhancement)之現象。半數代測物之萃取效率達60%以上,較低的待測物包括白三烯E4 (27.3%)、鄰苯二甲酸單乙酯(31.8%)與1-羥基芘葡萄糖苷酸(46.3%)。本研究成功開發使用離子交換樹脂從尿液中同時萃取具有強酸及弱酸性質的化合物之前處理方法,平均每個樣本只需要三分鐘,有效節省分析過程所需的時間和人力資源。 本研究利用此新研發之方法分析了350個學童的真實尿液樣本。鄰苯二甲酸酯代謝物、雙酚A葡萄糖苷酸和1-羥基芘葡萄糖苷酸可以在大多數的樣本中被偵測到;全氟己酸和白三烯E4只能在少數幾個樣本中被偵測到,檢出率分別為21%和2%,而其他全氟碳化物在大部分的尿液樣本中均小於偵測極限。 本研究開發了可以同時偵測16種與過敏相關的汙染物在尿液中的本體或代謝物之檢測方法,除了利於探討各個物種對於健康效應之貢獻程度,鑒於這些汙染物在生活環境中分佈廣泛,亦可作為監測一般大眾暴露的有效工具。本方法每個樣本平均只需要10分鐘就可以完成分析,並且在前處理不需要使用β-葡萄糖醛酸酶(β-glucuronidase)進行水解反應,將可以快速處理大量的樣本,適合應用於大規模的暴露評估計畫或是流行病學研究所需的生物偵測資料。 | zh_TW |
| dc.description.abstract | Phthalates, bisphenol-A and perfluorinated chemicals (PFCs) are emerging contaminants that are used in many consumer products, and polycyclic aromatic hydrocarbons (PAHs) are common pollutants exist in the ambient air. People are continuously exposed to these ubiquitous chemicals through various pathways in daily life. In addition, many previous researches have reported the associations between adverse immune effects and the exposure to the above chemicals; however there has not a research to explore them simultaneously yet. To discover the crucial chemicals or their interactions, and to monitor the exposure in general population, biomonitoring of the internal dose of these pollutants is a suitable approach to evaluate their health effects from different sources.
This study developed and validated a method to simultaneously determine four phthalate metabolites, bisphenol A glucuronide (BPA-G), 1-hydroxypyrene glucuronide (1-OHP-G), nine perfluorinated chemicals, and leukotriene E4 (LTE4) in urine using ultra-high performance liquid chromatography/tandem mass spectrometry at selected-reaction monitoring with isotope-labeled techniques, and was applied on analyzing human urine samples. A high-throughput sample preparation was optimized on a 96-well weak anion ion-exchange (WAX) μElution plate. One milliliter of urine sample was centrifuged at 3600 rpm for 10 minutes, then an aliquot of 150-μL supernant was diluted with the same volume of 10 mM ammonium acetate in water, and was spiked with 20 uL of isotope-labeled internal standards. The total 320-μL sample was passed through the pre- conditioned sorbent with two times of 100μL 0.1% NH4OH in methanol and 200 μL of Milli-Q water; the sorbent were washed by 200 μL of 2% formic acid in Milli-Q water (v/v) and 50 μL of 70% methanol (v/v). The sorbent was dried by vacuum and analytes were eluted with four times of 25 μL of 0.1% NH4OH in methanol. The collected eluents were evaporated to barely dry by air, and were reconstituted with 100 μL of methanol. Two microliters of sample were inject onto the UPLC-MS/MS; the analytes were separated with an Ascentis Express C18 column with mobile phases composed of (A) 0.04% acetic acid in acetonitrile/water = 90:10 (v/v) and (B) 0.04% acetic acid in acetonitrile/water = 5:95 (v/v). Limits of detection of all analytes were ranged from 0.23 ng/mL to 6.54 ng/mL. The matrix effects of most analytes were 95% - 132%, except for BPA-G, 1-OHP-G, and LTE4 were 637%, 189% and 242%, respectively. Only half of the analytes performed extraction efficiencies more than 60%, the lowest ones were LTE4 (27.3%), monoethyl phthalate (MEP) (31.8%), and 1-OHP-G (46.3%). However, this method was able to extract both strong and weak acidic compounds simultaneously from complex urine matrix instead of analyzing separately, and also the sample preparation was fast and efficient needs only 3 min per sample. Totally 350 real samples from children were analyze by the new assay. Phthalate metabolites, BPA-G, and 1-OHP-G were detected in most samples. In contrast, PFCs and LTE4 were only detected in few samples with positive rate 21% (perfluorohexanoic acid) and 2%, respectively; most of the PFCs in samples were below LODs. This method can analyze 16 analytes relating to hypersensitization in human urine, and only took totally 10 min in sample preparation and in the instrument analysis, plus no need of enzymatic hydrolysis to cleave the glucuronide group. This method is able to process a large number of urine samples shortly, and provides biomonitoring data for epidemiological studies or exposure assessment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:18:37Z (GMT). No. of bitstreams: 1 ntu-101-R00844004-1.pdf: 1655605 bytes, checksum: 051c8e738c8ba414e8a583318156474c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract I List of Figures V Chapter 1. Introduction 1 1.1. Phthalates 1 1.2. Bisphenol A 3 1.3. Perfluorinated chemicals 5 1.4. Polycyclic aromatic hydrocarbons 7 1.5. Analytical methods for phthalate metabolites, PFCs, BPA-G, and 1-OHP-G 8 1.6. Objectives 9 Chapter 2. Methods 11 2.1. Reagents and materials 11 2.2. Sample collection and analysis 13 2.2.1 Sample collection 13 2.2.2 Sample preaparation 14 2.2.3 Instrumental analysis 15 2.3. Identification, quantification, and data analysis 16 2.4. Method validation 17 2.4.1 Accuracy and precision 17 2.4.2 Matrix effect and extraction efficiency 18 2.5. Quality assurance and quality control 18 Chapter 3. Results and discussions 21 3.1. Methodology 21 3.1.1 Optimization of MS/MS parameters 21 3.1.2 Chromatography 21 3.1.3 Optimization of solid phase extraction 24 3.1.4 Method Validation 25 3.2. Applications to human samples 29 3.2.1 Concentrations in cases and controls 29 3.2.2 Concentrations in samples from special clinic 34 Chapter 4. Conclusions 35 References 37 Figure 42 Tables 49 | |
| dc.language.iso | en | |
| dc.subject | 鄰苯二甲酸酯 | zh_TW |
| dc.subject | 雙酚A | zh_TW |
| dc.subject | 1-羥基芘 | zh_TW |
| dc.subject | 全氟碳化物 | zh_TW |
| dc.subject | 離子交換樹脂 | zh_TW |
| dc.subject | 葡萄糖苷 | zh_TW |
| dc.subject | 酸 | zh_TW |
| dc.subject | glucuronide | en |
| dc.subject | phthalate | en |
| dc.subject | bisphenol A | en |
| dc.subject | 1-hydroxypyrene | en |
| dc.subject | perfluorinated chemicals | en |
| dc.subject | WAX | en |
| dc.subject | μElution | en |
| dc.title | 以液相層析串聯式質譜儀檢測尿液中鄰苯二甲酸酯代謝物、雙酚A葡萄糖苷酸、1-羥基芘葡萄糖苷酸、全氟碳化物及白三烯E4 | zh_TW |
| dc.title | Determination of phthalate metabolites, bisphenol A glucuronide, 1-hydroxypyrene glucuronide, perfluorinated chemicals and leukotriene E4 in urine | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭育良(Yue-Liang Guo),陳保中(Pau-Chung Chen),蔡東湖(Tung-Hu Tsai) | |
| dc.subject.keyword | 鄰苯二甲酸酯,雙酚A,1-羥基芘,全氟碳化物,離子交換樹脂,葡萄糖苷,酸, | zh_TW |
| dc.subject.keyword | phthalate,bisphenol A,1-hydroxypyrene,perfluorinated chemicals,WAX,μElution,glucuronide, | en |
| dc.relation.page | 62 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-17 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
