Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60448
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林沛群(Pei-Chun Lin)
dc.contributor.authorGeng-Ping Renen
dc.contributor.author任耕平zh_TW
dc.date.accessioned2021-06-16T10:18:27Z-
dc.date.available2016-09-06
dc.date.copyright2013-09-06
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation[1] Robot. Available: http://en.wikipedia.org/wiki/Robot#History
[2] iRobot Braava. Available: http://www.irobot.com/global/en/home.aspx
[3] iRobot 510 PackBot. Available: http://www.irobot.com/us/learn/defense/packbot.aspx
[4] 新光保全 新保3號. Available: http://www.sks.com.tw/index.php?option=com_content&view=article&id=328&itemid=154
[5] 新光保全 新保6號. Available: http://www.sks.com.tw/index.php?option=com_content&view=article&id=476:6&catid=108:2009-08-20-09-44-51&Itemid=200
[6] Satellite navigation. Available: https://en.wikipedia.org/wiki/Satellite_navigation
[7] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, 'Modeling the Stochastic Drift of a MEMS-Based Gyroscope in Gyro/Odometer/GPS Integrated Navigation,' Intelligent Transportation Systems, IEEE Transactions on, vol. 11, pp. 856-872, 2010.
[8] J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi, 'Low-Cost Three-Dimensional Navigation Solution for RISS/GPS Integration Using Mixture Particle Filter,' Vehicular Technology, IEEE Transactions on, vol. 59, pp. 599-615, 2010.
[9] O. Aydogmus and M. F. Talu, 'Comparison of Extended-Kalman- and Particle-Filter-Based Sensorless Speed Control,' Instrumentation and Measurement, IEEE Transactions on, vol. 61, pp. 402-410, 2012.
[10] R. Sharaf and A. Noureldin, 'Sensor Integration for Satellite-Based Vehicular Navigation Using Neural Networks,' Neural Networks, IEEE Transactions on, vol. 18, pp. 589-594, 2007.
[11] J. Dah-Jing and W. Sheng-Hung, 'Adaptive Fuzzy Strong Tracking Extended Kalman Filtering for GPS Navigation,' Sensors Journal, IEEE, vol. 7, pp. 778-789, 2007.
[12] T. Xu and P. Cui, 'Fuzzy Adaptive Interacting Multiple Model Algorithm for INS/GPS,' in Mechatronics and Automation, 2007. ICMA 2007. International Conference on, 2007, pp. 2963-2967.
[13] Z. Ronghui and W. Jianwei, 'Neural network-aided adaptive unscented Kalman filter for nonlinear state estimation,' Signal Processing Letters, IEEE, vol. 13, pp. 445-448, 2006.
[14] J. Z. Sasiadek and Q. Wang, 'Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle,' in Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on, 1999, pp. 2970-2975 vol.4.
[15] R. Toledo-Moreo, M. A. Zamora-Izquierdo, B. Ubeda-Miarro, Go, x, and A. F. mez-Skarmeta, 'High-Integrity IMM-EKF-Based Road Vehicle Navigation With Low-Cost GPS/SBAS/INS,' Intelligent Transportation Systems, IEEE Transactions on, vol. 8, pp. 491-511, 2007.
[16] K. Jo, K. Chu, and M. Sunwoo, 'Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning,' Intelligent Transportation Systems, IEEE Transactions on, vol. 13, pp. 329-343, 2012.
[17] L. Kang, T. Han-Shue, and J. K. Hedrick, 'Map-aided GPS/INS localization using a low-order constrained Unscented Kalman Filter,' in Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, 2009, pp. 4607-4612.
[18] S. A. Berrabah, Y. Baudoin, and H. Sahli, 'Combined GPS/INS/WSS integration and visual SLAM for geo-localization of a mobile robot,' in Mechatronics (ICM), 2011 IEEE International Conference on, 2011, pp. 499-503.
[19] F. Chausse, B. Seung-Min, S. Bonnet, R. Chapuis, and J. P. Derutin, 'Experimental comparison of EKF and Constraint Manifold particle Filter for robot localization,' in Multisensor Fusion and Integration for Intelligent Systems, 2008. MFI 2008. IEEE International Conference on, 2008, pp. 399-404.
[20] A. Khitwongwattana and T. Maneewarn, 'Extended Kalman Filter with Adaptive Measurement Noise Characteristics for Position Estimation of an Autonomous Vehicle,' in Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on, 2008, pp. 505-509.
[21] A. N. Ndjeng, A. Lambert, D. Gruyer, and S. Glaser, 'Experimental comparison of Kalman Filters for vehicle localization,' in Intelligent Vehicles Symposium, 2009 IEEE, 2009, pp. 441-446.
[22] M. Baumann, D. Eck, L. Lemmer, and K. Schilling, 'UKF Sensor Data Fusion for Localisation of a Mobile Robot,' in Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), 2010, pp. 1-8.
[23] E. North, J. Georgy, M. Tarbouchi, U. Iqbal, and A. Noureldin, 'Enhanced mobile robot outdoor localization using INS/GPS integration,' in Computer Engineering & Systems, 2009. ICCES 2009. International Conference on, 2009, pp. 127-132.
[24] Y. Morales, E. Takeuchi, and T. Tsubouchi, 'Vehicle localization in outdoor woodland environments with sensor fault detection,' in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 2008, pp. 449-454.
[25] Y. Morales, T. Tsubouchi, and S. Yuta, 'Vehicle 3D localization in mountainous woodland environments,' in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 3588-3594.
[26] S. Rezaei and R. Sengupta, 'Kalman Filter-Based Integration of DGPS and Vehicle Sensors for Localization,' Control Systems Technology, IEEE Transactions on, vol. 15, pp. 1080-1088, 2007.
[27] Z. Anmin and S. X. Yang, 'A fuzzy logic approach to reactive navigation of behavior-based mobile robots,' in Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, 2004, pp. 5045-5050 Vol.5.
[28] V. Ganapathy, Y. Soh Chin, and J. Ng, 'Fuzzy and Neural controllers for acute obstacle avoidance in mobile robot navigation,' in Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, 2009, pp. 1236-1241.
[29] J. Yi, X. Zhang, Z. Ning, and Q. Huang, 'Intelligent Robot Obstacle Avoidance System Based on Fuzzy Control,' in Information Science and Engineering (ICISE), 2009 1st International Conference on, 2009, pp. 3812-3815.
[30] K. Seung-Hun, R. Chi-won, K. Sung-Chul, and P. Min-Yong, 'Outdoor Navigation of a Mobile Robot Using Differential GPS and Curb Detection,' in Robotics and Automation, 2007 IEEE International Conference on, 2007, pp. 3414-3419.
[31] J. Borenstein and Y. Koren, 'High-speed obstacle avoidance for mobile robots,' in Intelligent Control, 1988. Proceedings., IEEE International Symposium on, 1988, pp. 382-384.
[32] J. Borenstein and Y. Koren, 'The vector field histogram-fast obstacle avoidance for mobile robots,' Robotics and Automation, IEEE Transactions on, vol. 7, pp. 278-288, 1991.
[33] GNSS augmentation. Available: https://en.wikipedia.org/wiki/GNSS_augmentation
[34] S. P. Drake. Converting GPS Coordinates (phi,lamda,h) to Navigation Coordinates (ENU).
[35] Ashtech ProMark 200. Available: http://www.spectraprecision.com/products/gnss-surveying/promark-200-4568.kjsp
[36] Septentrio AsteRx-m OEM. Available: http://www.septentrio.com/products/receivers/asterx-m
[37] S. Alban, D. Akos, S. M. Rock, and D. Gebre-Egziabher, 'Performance analysis and architectures for INS-aided GPS tracking loops,' Institute of Navigation–NTM, pp. 611-622, 2003.
[38] Honeywell HMC2003. Available: http://honeywell.com/Pages/Search.aspx?k=HMC2003
[39] 鄭智中, '具避障功能之可傾式雙輪平台設計與實現,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2010.
[40] 溫詠仁, '輪型機器人智慧化跟隨與召喚之設計與實現,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2011.
[41] 游崴舜, '可側傾雙輪機器人之運動控制與其內部機器人泛用機電系統架構,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2012.
[42] 蔡佳宏, '距離感測器於輪型機器人之應用,' 碩士論文, 機械工程學系, 國立台灣大學, 台北, 2011.
[43] W. Youg Jen, T. Chia-Hung, Y. Wei-Shun, and L. Pei-Chun, 'Infrared sensor based target following device for a mobile robot,' in Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME International Conference on, 2011, pp. 49-54.
[44] Y. Wei-Shun, R. Geng-Ping, T. Chia-Hung, W. Youg Jen, and L. Pei-Chun, 'Target Tracking and Following of a Mobile Robot Using Infrared Sensors,' in International Symposium on Robotics (ISR),2012 2012.
[45] M. J. Caruso, 'Applications of magnetoresistive sensors in navigation systems,' SAE transactions, vol. 106, pp. 1092-1098, 1997.
[46] M. J. Caruso, 'Applications of magnetic sensors for low cost compass systems,' in Position Location and Navigation Symposium, IEEE 2000, 2000, pp. 177-184.
[47] R. E. Kalman, 'A new approach to linear filtering and prediction problems,' Journal of basic Engineering, vol. 82, pp. 35-45, 1960.
[48] R. S. Bucy and K. D. Senne, 'Digital synthesis of non-linear filters,' Automatica, vol. 7, pp. 287-298, 1971.
[49] S. J. Julier and J. K. Uhlmann, 'New extension of the Kalman filter to nonlinear systems,' in AeroSense'97, 1997, pp. 182-193.
[50] E. A. Wan and R. Van Der Merwe, 'The unscented Kalman filter for nonlinear estimation,' in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000. AS-SPCC. The IEEE 2000, 2000, pp. 153-158.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60448-
dc.description.abstract本論文主要開發機器人在室外三度空間中運動時機器人本體狀態(body state)估測器,並以此估測器為基礎建立機器人的避障導航演算法。本體狀態估測器中使用了三種位置感測器GPS(Global Position System)、編碼器、和加速規,以及三種姿態感測器磁力計、傾斜儀、和陀螺儀,以無損型卡爾曼濾波器(Unscented Kalman Filter)架構,估測出完整的機器人本體狀態。其後,並以雙輪機器人與履帶機器人兩個不同的實驗平台,進行實驗驗證,探討估測器在室外的估測表現及評估估測器受到各感測器量測值變化所產生之影響。室外避障導航演算法是以前述估測器所計算出機器人的位置與姿態為基礎,配合以超音波陣列達到環境障礙偵測與避障,來規劃出機器人適當的導航機制,來調控機器人運行之前進速度與角速度。避障導航演算法並先以電腦模擬分析方式,探討系統中各參數對導航特性之影響。之後如同位置與姿態估測器之方式,以雙輪機器人與履帶機器人兩個不同的實驗平台,進行導航的實驗驗證。zh_TW
dc.description.abstractThe main purpose of this paper is to design a body state estimator on mobile robots with NOAA(Navigation with Obstacle Avoidance Algorithm) in three-dimensional space of outdoor environments. The body state estimator is based on unscented Kalman filter theory, using three positional sensors such as GPS(Global Position System), encoders and accelerometers as well as three attitudinal sensors including magnetometers, inclinometers and gyroscopes. We verified its outdoor estimation abilities as well as the effects of the signal variation of each individual sensor on the estimator through experiments on the tracked mobile robot and the two-wheeled mobile robot. The NOAA strategy is based on the position and attitude information which computed by the estimator, and it is to apply obstacle avoidance algorithm by using array of the ultrasonic sensors for environments sensing, while using two control parameters - speed and angular velocity controlling constant - respectively. Last, we simulated the coupling effects between parameters and situation during the navigation period on the NOAA strategy with computer and validated it through experiments on the tracked and two wheeled mobile robots.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:18:27Z (GMT). No. of bitstreams: 1
ntu-102-R00522831-1.pdf: 3471489 bytes, checksum: 36a4981a638dfb1500894bcbdcff311e (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻回顧 4
1.4 貢獻 8
1.5 論文架構 8
第2章 系統架構和實驗機器人介紹 10
2.1 全球導航衛星系統介紹 10
2.1.1 美國GPS系統介紹 11
2.1.2 星基擴增系統介紹 14
2.1.3 座標系統簡介 15
2.1.4 GPS接收器介紹 18
2.2 慣性導航系統 19
2.3 GPS/INS整合系統介紹 21
2.4 磁力計 24
2.5 實驗機器人介紹 25
2.6 系統架構 30
2.7 實驗結果 31
2.7.1 GPS接收器靜態誤差分析 31
2.7.2 磁力計誤差分析 33
第3章 估測器的設計與實驗 37
3.1 卡爾曼濾波器理論 37
3.1.1 卡爾曼濾波器 38
3.1.2 擴展型卡爾曼濾波器 40
3.1.3 無損型卡爾曼濾波器 42
3.2 二維位置量測模型推導 45
3.3 二維位置量測模型實驗 49
3.3.1 比較EKF與UKF估測能力 49
3.3.2 比較UKF不同取樣時間的狀況 50
3.4 三維位置量測模型推導 52
3.5 三維位置量測模型實驗 56
3.5.1 比較二維與三維模型在斜坡上的估測能力 56
3.5.2 驗證長時間長距離下UKF的估測能力 58
3.5.3 驗證崎嶇地估測能力 61
3.6 本章結論 63
第4章 避障導航演算法 64
4.1 導航策略 64
4.2 導航策略模擬 66
4.3 避障演算法 71
4.4 避障導航演算法 72
4.5 避障導航實驗 73
4.6 本章結論 78
第5章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 79
參考文獻 81
dc.language.isozh-TW
dc.subject本體狀態估測器zh_TW
dc.subjectGPSzh_TW
dc.subject機器人zh_TW
dc.subject避障zh_TW
dc.subject室外導航zh_TW
dc.subject卡爾曼濾波器zh_TW
dc.subjectoutdoor navigationen
dc.subjectbody state estimatoren
dc.subjectGPSen
dc.subjectmobile roboten
dc.subjectKalman filteren
dc.subjectobstacle avoidanceen
dc.title以多感測器融合建構機器人於戶外環境之智慧型導航zh_TW
dc.titleMulti-sensor fusion on mobile robots for intelligent navigation in outdoor environmentsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃光裕(Kuang-Yuh Huang),李綱(Kang Li),顏炳郎
dc.subject.keyword本體狀態估測器,GPS,機器人,避障,室外導航,卡爾曼濾波器,zh_TW
dc.subject.keywordbody state estimator,GPS,mobile robot,obstacle avoidance,outdoor navigation,Kalman filter,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2013-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved