Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧彥文(Yen-Wen Lu)
dc.contributor.authorSheng-Ju Chenen
dc.contributor.author陳聖儒zh_TW
dc.date.accessioned2021-06-16T10:17:56Z-
dc.date.available2020-07-17
dc.date.copyright2020-07-17
dc.date.issued2020
dc.date.submitted2020-07-07
dc.identifier.citation
Amar, L. I., D. Guisado, M. Faria, J. P. Jones, C. J. M. van Rijn, M. I. Hill and E. F. Leonard (2018). 'Erythrocyte fouling on micro-engineered membranes.' Biomedical Microdevices 20(3): 55.
Andereck, C. D., S. S. Liu and H. L. Swinney (1986). 'Flow regimes in a circular Couette system with independently rotating cylinders.' Journal of Fluid Mechanics 164: 155-183.
(2020). Apheresis Market by Product [Device (Centrifugation, Membrane Separation) Disposable], Procedure (Donor, Therapeutic), Application (Plasmapheresis, Plateletpheresis), Technology, End-User, Region - Global Forecast to 2025.
Amar, L. I., D. Guisado, M. Faria, J. P. Jones, C. J. M. van Rijn, M. I. Hill and E. F. Leonard (2018). 'Erythrocyte fouling on micro-engineered membranes.' Biomed Microdevices 20(3): 55.
Ameer, G. A., G. Barabino, R. Sasisekharan, W. Harmon, C. L. Cooney and R. Langer (1999). 'Ex vivo evaluation of a Taylor-Couette flow, immobilized heparinase I device for clinical application.' Proceedings of the National Academy of Sciences 96(5): 2350.
Ameer, G. A., E. A. Grovender, B. Obradovic, C. L. Cooney and R. Langer (1999). 'RTD analysis of a novel Taylor-Couette flow device for blood detoxification.' AIChE Journal 45(3): 633-638.
Andereck, C. D., S. S. Liu and H. L. Swinney (1986). 'Flow regimes in a circular Couette system with independently rotating cylinders.' Journal of Fluid Mechanics 164: 155-183.
Anker, P., H. Mulcahy, X. Qi Chen and M. Stroun (1999). 'Detection of Circulating Tumour DNA in the Blood (Plasma/Serum) of Cancer Patients.' Cancer and Metastasis Reviews 18(1): 65-73.
Beaudoin, G. and M. Y. Jaffrin (1989). 'Plasma filtration in Couette flow membrane devices.' Artificial Organs 13(1): 43-51.
Bock, C. P. (2006). 'Particle separation through Taylor-Couette flow and dielectrophoretic trapping '.
Bruil, A., T. Beugeling, J. Feijen and W. G. van Aken (1995). 'The mechanisms of leukocyte removal by filtration.' Transfus Med Rev 9(2): 145-166.
Castillo, T. N., M. A. Pouliot, H. J. Kim and J. L. Dragoo (2011). 'Comparison of growth factor and platelet concentration from commercial platelet-rich plasma separation systems.' Am J Sports Med 39(2): 266-271.
Desmet, G., H. Verelst and G. V. Baron (1996). 'Local and global dispersion effects in Couette-Taylor flow—II. Quantitative measurements and discussion of the reactor performance.' Chemical Engineering Science 51(8): 1299-1309.
Donnelly, R. J. (1991). 'Taylor‐Couette Flow: The early days.'
Dutta, P. K. and A. K. Ray (2004). 'Experimental investigation of Taylor vortex photocatalytic reactor for water purification.' Chemical Engineering Science 59(22): 5249-5259.
Fischel, R. J., H. Fischel, A. Shatzel, W. P. Lange, D. Cahill, D. Gervais and N. L. Ascher (1988). 'Couette membrane filtration with constant shear stress.' ASAIO Trans 34(3): 375-385.
Foley, G. (2006). 'A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions.' Journal of Membrane Science 274(1): 38-46.
Gingell, D. and I. Todd (1975). 'Adhesion of red blood cells to charged interfaces between immiscible liquids. A new method.' Journal of Cell Science 18(2): 227.
Giordano, R. C., R. L. C. Giordano, D. M. F. Prazeres and C. L. Cooney (1998). 'Analysis of a Taylor–Poiseuille vortex flow reactor—I: Flow patterns and mass transfer characteristics.' Chemical Engineering Science 53(20): 3635-3652.
Harkes, G., J. Feijen and J. Dankert (1991). 'Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity.' Biomaterials 12(9): 853-860.
Houwen, B. (2002). 'Blood film preparation and staining procedures.' Clin Lab Med 22(1): 1-14, v.
Jaffrin, M. Y. (2011). 'Hydrodynamic Techniques to Enhance Membrane Filtration.' Annual Review of Fluid Mechanics 44(1): 77-96.
Jaffrin, M. Y., L. H. Ding and M. J. Laurent (1992). 'Kinetics of concentration-polarization formation in crossflow filtration of plasma from blood: experimental results.' Journal of Membrane Science 72(3): 267-275.
Jaiswal, A. S. P. (2018). 'Hemodialysis Market by Type (Conventional [3 times per week], Daily [6 days a week], and Nocturnal [3-6 nights per week]), Product Service (Equipment, Consumable, Drug, and Service), and End User (In-center dialysis and Home dialysis) - Global Opportunity Analysis and Industry Forecast, 2018-2025.'
Jiang, T., M. D. Kennedy, W. G. J. van der Meer, P. A. Vanrolleghem and J. C. Schippers (2003). 'The role of blocking and cake filtration in MBR fouling.' Desalination 157(1): 335-343.
Kaplan, A. A. and S. E. Halley (1988). 'Evaluation of a rotating filter for use with therapeutic plasma exchange.' ASAIO Trans 34(3): 274-276.
Kim, J. S., D. H. Kim, B. Gu, D. Y. Kim and D. R. Yang (2013). 'Simulation of Taylor–Couette reactor for particle classification using CFD.' Journal of Crystal Growth 373: 106-110.
Kuo, D.-C. and K. S. Ball (1997). 'Taylor–Couette flow with buoyancy: Onset of spiral flow.' Physics of Fluids 9(10): 2872-2884.
Leitner, G. C., R. Gruber, J. Neumüller, A. Wagner, P. Kloimstein, P. Höcker, G. F. Körmöczi and C. Buchta (2006). 'Platelet content and growth factor release in platelet-rich plasma: a comparison of four different systems.' Vox Sang 91(2): 135-139.
Lueptow, R. M. and A. Hajiloo (1995). 'Flow in a rotating membrane plasma separator.' ASAIO Journal 41(2): 182-188.
Majji, M. V. and J. F. Morris (2018). 'Inertial migration of particles in Taylor-Couette flows.' Physics of Fluids 30(3): 033303.
Martinand, D., E. Serre and R. M. Lueptow (2009). 'Absolute and convective instability of cylindrical Couette flow with axial and radial flows.' Physics of Fluids 21(10): 104102.
Min, K. and R. M. Lueptow (1994). 'Circular Couette flow with pressure-driven axial flow and a porous inner cylinder.' Experiments in Fluids 17(3): 190-197.
Mittal, S. and T. E. Tezduyar (2018). 'Comment on “Experimental investigation of Taylor vortex photocatalytic reactor for water purification”.' Chemical Engineering Science 192: 1262.
Moroson, H. and M. Rotman (1975). Biomedical Applications of Polycations. Polyelectrolytes and their Applications. A. Rembaum and E. Sélégny. Dordrecht, Springer Netherlands: 187-195.
Mota, M., J. A. Teixeira and A. Yelshin (2002). 'Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations.' Separation and Purification Technology 27(2): 137-144.
Nakamura, M., S. Bessho and S. Wada (2014). 'Analysis of Red Blood Cell Deformation under Fast Shear Flow for Better Estimation of Hemolysis.' International Journal for Numerical Methods in Biomedical Engineering 30(1): 42-54.
Nevaril, C. G., E. C. Lynch, C. P. Alfrey, Jr. and J. D. Hellums (1968). 'Erythrocyte damage and destruction induced by shearing stress.' J Lab Clin Med 71(5): 784-790.
Ohashi, K., K. Tashiro, F. Kushiya, T. Matsumoto, S. Yoshida, M. Endo, T. Horio, K. Ozawa and K. Sakai (1988). 'Rotation-induced Taylor vortex enhances filtrate flux in plasma separation.' ASAIO transactions 34(3): 300-307.
Ohmura, N., T. Suemasu and Y. Asamura (2005). 'Particle classification in Taylor vortex flow with an axial flow.' Journal of Physics: Conference Series 14: 64-71.
R. Byron Bird, W. E. S., Edwin N. Lightfoot. (1960). 'Transport phenomena.'
Songjaroen, T., W. Dungchai, O. Chailapakul, C. S. Henry and W. Laiwattanapaisal (2012). 'Blood separation on microfluidic paper-based analytical devices.' Lab on a Chip 12(18): 3392-3398.
Strong, A. B. and L. Carlucci (1976). 'An experimental study of mass transfer in rotating couette flow with low axial reynolds number.' The Canadian Journal of Chemical Engineering 54(4): 295-298.
Taylor, G. I. (1923). 'VIII. Stability of a viscous liquid contained between two rotating cylinders.' Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 223(605-615): 289-343.
Tetta, C., G. Segoloni, G. Camussi, S. Neumann, S. Griva, S. Piva, A. Pacitti and A. Vercellone (1987). 'In vitro complement-independent activation of human neutrophils by hemodialysis membranes: role of the net electric charge.' Int J Artif Organs 10(2): 83-88.
Vryzas, Z. and V. C. Kelessidis (2017). 'Nano-Based Drilling Fluids: A Review.' Energies 10(4).
Wang, S. and N. Ohmura (2017). Dynamical particle motions in vortex flows.
Wereley, S. T. and R. M. Lueptow (1999). 'Inertial particle motion in a Taylor Couette rotating filter.' Physics of Fluids 11(2): 325-333.
Wereley, S. T. and R. M. Lueptow (1999). 'Velocity field for Taylor–Couette flow with an axial flow.' Physics of Fluids 11(12): 3637-3649.
Yen, J.-H., S.-F. Chen, M.-K. Chern and P.-C. Lu (2014). 'The effect of turbulent viscous shear stress on red blood cell hemolysis.' Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs 17.
Yue, Q. F., B. Xiong, W. X. Chen and X. Y. Liu (2014). 'Comparative study of the efficacy of Wright-Giemsa stain and Liu's stain in the detection of Auer rods in acute promyelocytic leukemia.' Acta Histochem 116(6): 1113-1116.
李柏蒼 (2005). '透析膜的特性與臨床應用.'
Beaudoin, G. and M. Y. Jaffrin (1989). 'Plasma Filtration in Couette Flow Membrane Devices.' Artificial Organs 13(1): 43-51.
Bruil, A., T. Beugeling, J. Feijen and W. G. van Aken (1995). 'The mechanisms of leukocyte removal by filtration.' Transfusion Medicine Reviews 9(2): 145-166.
Desmet, G., H. Verelst and G. V. Baron (1996). 'Local and global dispersion effects in Couette-Taylor flow—II. Quantitative measurements and discussion of the reactor performance.' Chemical Engineering Science 51(8): 1299-1309.
Dutta, P. K. and A. K. Ray (2004). 'Experimental investigation of Taylor vortex photocatalytic reactor for water purification.' Chemical Engineering Science 59(22): 5249-5259.
Fischel, R. J., H. Fischel, A. Shatzel, W. P. Lange, D. Cahill, D. Gervais and N. L. Ascher (1988). 'Couette membrane filtration with constant shear stress.' ASAIO Trans 34(3): 375-385.
Foley, G. (2006). 'A review of factors affecting filter cake properties in dead-end microfiltration of microbial suspensions.' Journal of Membrane Science 274(1-2): 38-46.
Gingell, D. and I. Todd (1975). 'Adhesion of red blood cells to charged interfaces between immiscible liquids. A new method.' Journal of Cell Science 18(2): 227.
Harkes, G., J. Feijen and J. Dankert (1991). 'Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity.' Biomaterials 12(9): 853-860.
Henderson, K. L., D. R. Gwynllyw and C. F. Barenghi (2007). 'Particle tracking in Taylor–Couette flow.' European Journal of Mechanics - B/Fluids 26(6): 738-748.
Houwen, B. (2002). 'Blood film preparation and staining procedures.' Clinics in Laboratory Medicine 22(1): 1-14.
Kim, J. S., D. H. Kim, B. Gu, D. Y. Kim and D. R. Yang (2013). 'Simulation of Taylor–Couette reactor for particle classification using CFD.' Journal of Crystal Growth 373: 106-110.
Leighton, D. and A. Acrivos (2006). 'The shear-induced migration of particles in concentrated suspensions.' Journal of Fluid Mechanics 181: 415-439.
Majji, M. V. and J. F. Morris (2018). 'Inertial migration of particles in Taylor-Couette flows.' Physics of Fluids 30(3): 033303.
Moroson, H. and M. Rotman (1975). Biomedical Applications of Polycations. Polyelectrolytes and their Applications. A. Rembaum and E. Sélégny. Dordrecht, Springer Netherlands: 187-195.
Ohashi, K., K. Tashiro, F. Kushiya, T. Matsumoto, S. Yoshida, M. Endo, T. Horio, K. Ozawa and K. Sakai (1988). 'Rotation-induced Taylor vortex enhances filtrate flux in plasma separation.' ASAIO transactions 34(3): 300-307.
Ohmura, N., T. Suemasu and Y. Asamura (2005). 'Particle classification in Taylor vortex flow with an axial flow.' Journal of Physics: Conference Series 14: 64-71.
Qiao, J., R. Deng and C.-H. Wang (2015). 'Particle motion in a Taylor vortex.' International Journal of Multiphase Flow 77: 120-130.
Sinevic, V., R. Kuboi and A. W. Nienow (1986). 'Power numbers, Taylor numbers and Taylor vortices in viscous newtonian and non-newtonian fluids.' Chemical Engineering Science 41(11): 2915-2923.
Songjaroen, T., W. Dungchai, O. Chailapakul, C. S. Henry and W. Laiwattanapaisal (2012). 'Blood separation on microfluidic paper-based analytical devices.' Lab on a Chip 12(18): 3392-3398.
Taylor Geoffrey, I. (1923). 'VIII. Stability of a viscous liquid contained between two rotating cylinders.' Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 223(605-615): 289-343.
Tetta, C., G. Segoloni, G. Camussi, S. Neumann, S. Griva, S. Piva, A. Pacitti and A. Vercellone (1987). In vitro Complement-Independent Activation of Human Neutrophils by Hemodialysis Membranes: Role of the Net Electric Charge.
Wereley, S. T. and R. M. Lueptow (1999). 'Inertial particle motion in a Taylor Couette rotating filter.' Physics of Fluids 11(2): 325-333.
Wu, Y., M. S. Kanna, C. Liu, Y. Zhou and C. K. Chan (2016). 'Generation of Autologous Platelet-Rich Plasma by the Ultrasonic Standing Waves.' IEEE Trans Biomed Eng 63(8): 1642-1652.
Yue, Q. F., B. Xiong, W. X. Chen and X. Y. Liu (2014). 'Comparative study of the efficacy of Wright-Giemsa stain and Liu's stain in the detection of Auer rods in acute promyelocytic leukemia.' Acta Histochemica 116(6): 1113-1116.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60428-
dc.description.abstract本研究建立了泰勒-庫埃特裝置並將其用於血液分離以製備血小板濃縮液。由於血液中工作流體的複雜性,設備需要進行系統分析以評估和優化其過濾效率。首先應用流體視覺化技術在操作過程中從泰勒裝置中抽取血球細胞以了解不同泰勒-庫埃特流態的細胞分類能力。泰勒渦流對不同大小的血細胞進行了分類:較大的血球細胞向渦流的外圍移動,而較小的血球細胞保持靠近渦流的中心。
此外,我們還使用兩種不同的裝置設計和一系列操作參數(包括轉速和流速)來評估和優化血液過濾效率。發現泰勒渦流可對血球細胞進行分類並提高過濾效率。 Ω = 1500 rpm時,PLT的回收率約為40%,體積比為40%,而RBC和WBC的回收率分別為75%和85%。
zh_TW
dc.description.abstractA Taylor-Couette device is developed and utilized in blood separation to prepare platelet concentrate. Due to the complexity of the working fluids in blood, the devices require systematic analysis to evaluate and optimize their filtration efficiency. The flow visualization techniques and cell extraction from the device during the operation for the size distribution were first applied to understand the cell classification capability of different Taylor-Couette flow regimes. Blood cells at different sizes were classified by Taylor vortices: larger blood cells moved toward the periphery of the vortices, while smaller blood cells remained close to the center of the vortices. The blood filtration efficiencies are then evaluated and optimized with two different device designs and a series of operation parameters, including rotational speed and flow rates. It is found that Taylor vortices classify the blood cells and enhance the filtration efficiency. An approximately 90% recovery rate for PLT at rotational speed=1500 rpm within 40 % volumetric ratio were obtained, while the ones for RBC and WBC were 75% and 85% respectively.en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:17:56Z (GMT). No. of bitstreams: 1
U0001-0607202017472000.pdf: 5678470 bytes, checksum: e546b17c994292a41602331a81a7d588 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 ii
中文摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.3 Thesis Structure 5
Chapter 2 Literature Review 7
2.1 Membrane Filtration 7
2.2 Taylor-Couette Flow and its Visualization 9
2.2.1 Taylor Couette Flow and its Visualization 9
2.2.2 Vortices 10
2.3 Particle Separation in Taylor-Couette Flow 13
2.3.1 Inertial Movement of Particles in Taylor Vortex 13
2.3.2 Particle Classification in Taylor Vortex 15
2.4 Membrane Filtration for Blood Separation 17
2.4.1 Membrane Characteristic 18
2.5 Transmembrane Pressure 20
Chapter 3 Materials Methods 24
3.1 Taylor Vortex 24
3.2 Taylor-Couette Flow 26
3. 3 Device Design 28
3.4 Flow Visualization 29
3.4.1 Working fluid: 29
3.4.2 Experiment setups: 29
3.5 Experiments and Results 32
3.5.1. Size Distribution of Blood Cells inside a Taylor Vortex 32
3.5.2. Blood Cell Separation Efficiency of Taylor Couette Devices 34
3.6 Membrane 37
3.7 Blood Smear Examination 40
3.8 Blood Cell Damage and Shear Stress: 41
Chapter 4 Result Discussion 44
4.1 Axial Flow on Taylor Vortex (Visualization) 44
4.2 Axial Flow on Blood Cell Separation Efficiency 46
4.3 Device 3 48
4.4 Membrane and Filtration 50
4.4.1 Membrane Filtration and Clogging 50
4.4.2 Membrane Material and Pore Size for Blood Cell Separation 51
4.5 Performance Comparison of Device 2 and Device 3 53
4.6 Ratio between Axial Flow Rate and Filtrate Flow Rate 56
Chapter 5 Conclusions 58
5.1 Conclusions 58
5.2 Future work 59
References 61
Q A 72

Figure 1.1: The schematic of filter cake effect adapted from (Vryzas and Kelessidis 2017). 3
Figure 2.1: The schematic of dead-end filtration and cross-flow filtration (Mota, Teixeira et al. 2002). 8
Figure 2.2: Depending on the rotational speed of the inner cylinder, four flow states occur, including (a) Laminar circular Couette flow, (b) Taylor vortex flow, (c) Wavy-vortex flow, and (d) Turbulent Taylor vortices (Andereck, Liu et al. 1986). 9
Figure 2.3: Photograph of flow state at different Reynolds Number. (a) Taylor vortex flow (b) Wavy vortex flow (c) weakly TVF and (d) TVF (Dutta and Ray 2004). 10
Figure 2.4: Plasma collection apparatus. Whole blood enters the top of the device. Most narrow portion (6). Between the rotating membrane spinner (2). The stationary housing (1). The blood flows axially along the device while plasma flows across the membrane (4) into plasma collection groove (7) to central collection port and finally exits the device (11). Concentrated whole blood exits inferiorly (10) (Fischel, Fischel et al. 1988). 11
Figure 2.5: Diagram of the Taylor vortex device. Flow is split between the whole blood path and the reactive volume via a microporous membrane. The treated plasma is returned to the whole blood path where it is remixed with the cell components (Ameer, Grovender et al. 1999). 13
Figure 2.6: The movement trajectory of particle (dots) and streamlines (solid curves) for Re=125. Dots are equally spaced in time (Wereley and Lueptow 1999). 14
Figure 2.7: Equilibrium locations in the Taylor vortex flow from Re=120.8 to Re= 150. At Re > 151, the flow is wavy vortex flow (WVF) with azimuthal waviness in each vortex (Majji and Morris 2018). 15
Figure 2.8: Schematic to define the particle separation in our Taylor-Couette flow device, including classification and filtration 16
Figure 2.9: Schematic picture of classification mechanism in Taylor-Couette flow (Ohmura, Suemasu et al. 2005). 17
Figure 2.10: The relation between transmembrane pressure and filtrate flux. (a) At the lowest TMP. (b) At TMP is about 50mmHg. (c) At TMP is between 50 and 75 mmHg. (d) At TMP is greater than 100mmHg. 21
Figure 2.11: Filtrate flux for bovine blood with hematocrit 30% as a function of transmembrane pressure at varying rotational speeds and feed flow rate of 50mL/min (Ohashi, Tashiro et al. 1988). 22
Figure 2.12: Scanning electron micrograph of Si3N4 Microsieve with 300μm round Membrane Fields (with 0.25μm pores) packed with deformed erythrocytes solely at pored regions, indicating that erythrocytes are not chemically bound to Si3N4, but mechanically anchored within the pores. Measurement is made at maximum flux and high shear rate (0.35 cm/min at 8000 s−1). Images acquired after chasing the system with 2% glutaraldehyde solution at maximum filtrate rate. Thus, the cellular behavior shown closely approximate that during stable filtration. Magnification: 120X (L), 400X (M), 1900X (R) (Amar, Guisado et al. 2018). 23
Figure 3.1: Configuration of Taylor vortex. (Roand Ri are the radius of outer and inner cylinders; d is the annulus (d=Ro-Ri)) 30
Figure 3.2: Three flow patterns in annular region: Circular Couette flow, annular Poiseuille flow, and Taylor vortex flow. 32
Figure 3.3: Schematic of the experimental setup for flow visualization (Device 1). 35
Figure 3.4: Flow visualization in Taylor-Couette device (Device 1) at rotational speed= 0 ~ 250 rpm. Blood is used as the working fluid and polyamide particles as the tracers. (a) No stripe between Taylor vortices is seen at rotational speed=0. (b) No apparent stripe is not yet seen at rotational speed=70rpm. (c) Stripes gradually become visible at rotational speed=100 rpm. (d) Stripes become more clear at rotational speed=130 rpm. (e) Stripes almost disappear, and a stripes become wider and darker at rotational speed=250rpm. Note: these stripes are the areas between vortices. The stripes become strong and more visible as rotational speed increases from 70 to 250 rpm; they may shift, become wavy and eventually disappear, if rotational speed further increases. The green arrows indicated the motions of the tracers by visual observations. 36
Figure 3.5: (a) Experimental setup of the blood cell classification experiment in the vortex using Device 1. (b) Nine locations in a single vortex to sample the blood cells in a single vortex. Position 5 is at the center of the vortex while the other eight location (Positions 1,2,3,4,6,7,8, and 9) are close to the periphery of the vortex. (c) The percentage change of WBC, RBC and PLT cell numbers without and with Taylor vortices. 38
Figure 3.6: (a) Experimental setup for separation efficiency optimization in blood cell filtration experiment. (b) The image of the experimental setup. 41
Figure 3.7: The optical image ((a) and (b)), SEM image((c)and (d)) of the membrane, and SEM image((e) and (f)) of the membrane on lateral side. (Hitachi Tabletop TM-3000 Scanning Electron Microscope) 43
Figure 3.8: The membrane on the inner cylinder. (a) polycarbonate membrane. (b) cellulose membrane. 44
Figure 3.9: Blood smear of porcine blood. Stain by Liu’s stain solution. 46
Figure 3.10: Non-hemolytic blood. 48
Figure 4.1: Flow state shows the stripes between Taylor vortex may shift and disappear as the axial flow rate increases. Device 1 is used in this flow visualization. (a) Stripes can been seen when the axial flow rate =0~3mL/min. (b)-(1) (b)-(2) Stripes can been seen when the axial flow rate =9~20mL/min. (c) Stripes disappear when the axial flow rate =50mL/min. 45
Figure 4.2: The recovery rate of PLT using Device 2 at various rotational speed: (a) rotational speed= 70 rpm (only Couette flow, no vortex) (b) rotational speed=100 rpm (weak Taylor vortex). (c) rotational speed=130 rpm (Strong Taylor vortex). (d) rotational speed=250 rpm (Taylor vortex disappear). Note: the filtrate flow rate was 10mL/min for all these experiments. 48
Figure 4.3: The recovery rate of (a) PLT, (b) RBC, and (c) WBC, obtained by using Device 3 at various rotational speed. The feed flow rate is 10mL/min and the filtrate flow rate is 1mL/min. 49
Figure 4.4: The SEM image of membrane surface. (a) The filter cake effect: the condition of membrane after filtration without Taylor vortex (rotational speed is 0rpm). (b)The condition of membrane after filtration at 500 rpm without the Taylor vortex. The pores of the membrane are almost blocked by the blood cells. (c) The condition of membrane after filtration with the Taylor vortex at 1500rpm. The pores of the membrane are hardly blocked by the blood cells. Magnification: 1800X 51
Figure 4.5: Recovery rate of (a) PLT,(b) RBC and (c) WBC using the filtration membranes of polycarbonate or cellulose acetate with 0.8 and 3 μm pore sizes. 52
Figure 4.6: The recovery rate of PLT obtained at various flow rate. 57
Table 2.1: Survey of Polymer Materials for Complement Activation and Leukocyte Adhesion Potential (Bruil, Beugeling et al. 1995). 22
Table 3.1: Devices used in our study. 33
Table 3.2: The information of membrane. 43
Table 3.3 :The detail ingredient of Liu’s stain solution 44
Table 3.4: The process to do blood smear and stain 45
Table 4.1: Performance Comparison of Taylor-Couette Devices 60
dc.language.isoen
dc.title藉由泰勒庫埃特流優化血小板回收率zh_TW
dc.titlePlatelet Recovery Rate Optimization
Using Taylor-Couette Flow
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃振康(Chen-Kang Huang),盧博堅(Po-Chien Lu),林致廷(Chih-Ting Lin)
dc.subject.keyword泰勒庫埃特流,軸流效應,血球細胞分類,回收率,濾餅層,zh_TW
dc.subject.keywordTaylor Couette flow,axial flow effect,recovery rate,blood cell classification,filter cake,en
dc.relation.page73
dc.identifier.doi10.6342/NTU202001341
dc.rights.note有償授權
dc.date.accepted2020-07-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-0607202017472000.pdf
  目前未授權公開取用
5.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved