請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60402完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王淑珍(Su-Jen Wang) | |
| dc.contributor.author | Chieh-Ching Wang | en |
| dc.contributor.author | 王揭晴 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:17:18Z | - |
| dc.date.available | 2014-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-17 | |
| dc.identifier.citation | 鍾萍 (2012)不同溫度及營養元素對水稻蔗糖轉運蛋白基因表現之影響。國立台灣大學生物資源暨農學院系碩士論文。
戶刈義次 (1963) 作物學試驗法. 東京農業技術學會印行 第159-176 頁 Araki R, Hasegawa H, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breeding Science 56: 295-302 Ashraf M (1999) Interactive effect of salt (NaCl) and nitrogen form on growth, water relations and photosynthetic capacity of sunflower (Helianthus annuus L.). Annals of Applied Biology 135: 509–513 Balkos KD, Britto DT, Kronzucker HJ (2010) Optimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72). Plant Cell and Environment 33: 23–34 Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 7: 248-254 Bravin M, Travassac F, Le Floch M, Hinsinger P, Garnier JM (2008) Oxygen input controls the spatial and temporal dynamics of arsenic at the surface of a flooded paddy soil and in the rhizosphere of lowland rice (Oryza sativa L.): a microcosm study. Plant and Soil 312: 207-218 Britto DT, Kronzucker HJ (2002) NH4+ toxicity in higher plants: a critical review. Journal of Plant Physiology 159: 567-584 Britto DT, Kronzucker HJ (2004) Biotechnology of nitrogen acquisition in rice-implications for food security. Nitrogen Acquisition and Assimilation in Higher Plants 3: 261-281 Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annual Review of Plant Physiology and Plant Molecular Biology 50: 277-303 Chaillou S, Vessey JK, Morot-Gaudry JF, Raper CD Jr, Henry LT, Boutin JP (1991) Expression of characteristics of ammonium nutrition as affected by pH of the root medium. Journal of Experimental Botany 42: 189–196. Cheng CL, Acedo GN, Cristinsin M, Conkling MA (1992) Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proceedings of the National Academy of Sciences USA 89: 1861-1864 Cheng L, Fuchigami LH (2000) Rubisco activation state decreases with increasing nitrogen content in apple leaves. Journal of Experiment Botany 51: 1687-1694 Chevalier C, Bourgeois E, Just D, Raymond P (1996) Metabolic regulation of asparagine synthetase gene expression in maize (Zea mays L.) root tips. Plant Journal 9: 1-11 Claussen W, Lenz F (1999) Effect of ammonium or nitrate nutrition on net photosynthesis, growth, and activity of the enzymes nitrate reductase and glutamine synthetase in blueberry, raspberry and strawberry. Plant and Soil 208: 95-102 Colmer TD (2003) Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep‐water rice (Oryza sativa L.). Annals of Botany 91: 301-309 Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiology 125: 61-164 Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science 3: 389-395 Cruz C, Lips SH, Martin-Loucao MA (1993) The effect of nitrogen source on photosynthesis of carbon at high CO2 concentrations. Physiologia Plantarum 89: 552-556 Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology 72: 297-302 Farrar J, Pollock C, Gallagher J (2000) Sucrose and the integration of metabolism in vascular plants. Plant Science 154: 1-11 Ferrario-Mery S, Besin E, Puchon O, Meyer C, Hodges M (2006) The regulatory PII protein controls arginine biosynthesis in Arabidopsis. FEBS Letters 580: 2015-2020 Ferrario-Mery S, Meyer C, Hodges M (2008) Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Letters 582: 1061-1066 Foyer CH, Noctor G (2004) Photosynthetic nitrogen assimilation: inter-pathway control and signaling. Advances in Photosynthesis and Respiration 12: 1-22 Foyer CH, Parry M, Noctor G (2002) Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany 54: 585-593 Fraisire V, Gojon A, Tillard A, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. The Plant Journal 23: 489-496 Gerendas J, Zhu Z, Bendixen R, Ratcliffe RG, Sattelmacher B (2007) Physiological and biochemical processes related to ammonium toxicity in higher plants. Journal of Plant Nutrition and Soil Science 160: 239-251 Goh CH, Jang S, Jung S, Kim HS, Kang HG, Park YI, Bae HJ, Lww CH, An G (2009) Rice phot1a mutation reduces plant growth by affecting photosynthetic responses to light during early seedling growth . Plant Molecular Biology 69: 605-619 Guo R, Li X, Christie P, Chen Q, Jiang R, Jiang R, Zhang F (2008) Influence of root zone nitrogen management and a summer catch crop on cucumber yield and soil mineral nitrogen dynamics in intensive production systems. Plant and Soil 313: 55-70 Guo S, Schinner K, Sattelmacher B, Hansen UF (2005) Different apparent CO2 compensation points in nitrate- and ammonium-grown Phaseolus vulgaris and the relationship to non-photorespiratory CO2 evolution. Physiologia Plantarum 123: 288-301 Guo S, Zhou Y, Li Y, Gao Y, Shen Q (2008) Effects of different nitrogen form and water stress on water use efficiency of rice plants. Annals of Applied Biology 153: 127-134 Guo S, Zhou Y, Shen Q, Zhang F (2007) Effect of ammonium and nitrate nutrition on some physiological processes in higher plants - growth, photosynthesis, photorespiration, and water relations. Plant Biology 9: 21-29 Handa S, Warren HL, Huber DM, Tsai CY (1984) Nitrogen nutrition and seedling development of normal and opaque-2 maize genotypes. Canadian Journal of Plant Science 64: 885-894 Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence,and antioxidant enzymes in leaves of rice plants. Photosynthetica 42: 357-364 Huppe HC, Turpin DH (1994) Turpin integration of carbon and nitrogen metabolism in plant and algal cells. Annual Review of Plant Physiology and Plant Molecular Biology 45: 577-607 Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiology 105: 3-7 Jackson MB, Armstrong W (1999) Formation of aerenchyma and the process of plant ventilation in relation to soil flooding and submergence. Plant Biology 1: 274-287 Jonassen E, Lea U, Lillo C (2008) HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227: 559-564 Jonassen EM, Sevin DC, Lillo C (2009) The bZIP transcription factors HY5 and HYH are positive regulators of the main nitrate reductase gene in Arabidopsis leaves, NIA2, but negative regulators of the nitrate uptake gene NRT1.1. Journal of Plant Physiology 166: 2071-2076 Kawai M, Samarajeewa PK, Barrero RA, Nishiguchi M, Uchimiya H (1998) Cellular dissection of the degradation pattern of cortical cell death during aerenchyma formation of rice roots. Planta 204: 277-287 Kim DH, Shibato J, Kim DW, Oh MK, Kim MK, Shim IS, Iwahashi H, Masuo Y, Rakwal R (2009) Gel-based proteomics approach for detecting low nitrogen-responsive proteins in cultivated rice species. Physiology and Molecular Biology of Plants 15: 31-41 Kludze HK, DeLaune, Patrick WH (1993) Aerenchyma formation and methane and oxygen exchange in rice. Soil Science Society of America Journal 57: 386-391 Kondo M, Pablico, PP, Aragones, DV, Agbisit R, Abe J, Morita S, Courtois B (2003) Genotypic and environmental variations in root morphology in rice genotypes under upland field conditions. Plant and Soil 255: 189-200 Kronzucker HJ, Siddiqi MY, Glass AD, Kirk GJ (1999) Nitrate-ammonium synergism in rice. A subcellular flux analysis. Plant Physiology 119: 1041-1046 Lam H, Coschigano KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47: 569-593 Lam HM, Peng SS, Coruzzi GM (1994) Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiology 106: 1347-1357 Le Van Quy, Foyer C, Champigny ML (1991) Effect of light and NO3− on wheat leaf phosphoenolpyruvate carboxylase activity evidence for covalent modulation of the C3 enzyme. Plant Physiology 97: 1476-1482 Leegood RC, Lea PJ, Hausler RE (1996) Use of barley mutants to study the control of photorespiratory metabolism. Biochemical Society Transactions 24: 757-761 Lejay L, Tillard P, Lepetit M, Olive F, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3- uptake systems by N and C-status of Arabidopsis plants. The Plant Journal 18: 509-519 Lewis OAM, Chadwick S, Withers S (1983) The assimilation of ammonium by barley roots. Planta 159: 483-486 Li SM, Li BZ, Shi WM (2012) Expression patterns of nine ammonium transporters in rice in response to N status. Pedosphere 22: 860-869 Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regulation 64: 263-273 Loque D, Wiren N (2004) Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55: 1293-1305 Mackown CT, Van Sanford DA (1986) Postanthesis nitrate assimilation in winter wheat : in situ flag leaf reduction. Plant Physiology 81: 17-20 Magalhaes JE, Huber DM (1989) Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. Fertilizer Research 21: 1-6 Masumoto C, Miyazawa SI, Ohkawa H, Fukuda T, Taniguchi Y, Murayama S, Kusano M, Saito K, Fukayama H, Miyao M (2010) Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences of the United States of America 107: 5226-5231. Mehrer I, Mohr H (1989) Ammonium toxicity: description of the syndrome in Sinapis alba and the search for its causation. Physiologia Plantarum 77: 545-554 Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal 74: 562-564 Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiologia Plantarum 4: 508-520 Ochs G, Schock G, Trischler M, Kosemund K, Wild A (1999) Complexity and expression of the glutamine synthetase multigene family in the amphidiploid crop Brassica napus. Plant Molecular Biology 39: 395-405 Oliveira IC, Coruzzi GM (1999) Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant Physiology 121: 301-310 Osaki M, Iyoda M, Yamada S, Tadano T (1995) Effect of mutual shading on carbon distribution in rice plant. Soil Science and Plant Nutrition 41: 235-244 Raab TK, Terry N(1994) Nitrogen source regulation of growth and photosynthesis in Beta vulgaris L. Plant Physiology 105: 1159-1166. Raven JA (1985) Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytologist 101: 25-77 Ray D, Sheshshayee MS, Mukhopadhyay K, Bindumadhava H, Prasad TG, Kumar MU (2003) High nitrogen use efficiency in rice genotypes is associated with higher net photosynthetic rate at lower rubisco content. Biologia Plantrum 46: 251-256 Reitzer LJ, Magasanik B (1982) Asparagine synthetases of Klebsiella aerogenes: properties and regulation of synthesis. Journal of Bacteriology 151: 1299-1313 Sharma SN, Sirohi GS (1987) The effect of ammonium and nitrate on CO2 assimilation, RuBP and PEP carboxylase activity and dry matter production in wheat. Photosynthesis Research 12: 265-272 Shi WM, Yao Jing, Yan F (2009) Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrients, acidification and salinity of soils and groundwater contamination in south-eastern china. Nutrient Cycling in Agroecosystems 83: 73-84 Song WJ, Makeen K, Wang DS, Zhang CM, Xu YH, Zhao HJ, Tu E, Zhang YL, Shen QR, Xu GH (2011) Nitrate supply affects root growth differentially in two rice cultivars differing in nitrogen use efficiency. Plant Soil 343: 357–368 Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany 53: 959-970 Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. Journal of Experimental Botany 53: 971-977 Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. Journal of Experimental Botany 52:591-604 Uhrig, RG, NG KK, Moorhead GB (2009) PII in higher plants: a modern role for an ancient protein. Trends in Plant Science 14: 505-511 Vincentz M, Moureaux T, Leydecker MT, Vaucheret H, Caboche M (1993) Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant Journal 3: 315-324 Walch-Liu P, Neumann G, Engels C (2001) Response of shoot and root growth to supply of different nitrogen forms is not related to carbohydrate and nitrogen status of tobacco plants. Journal of Plant Nutrition and Soil Science 164: 97-103 Wang B, Neue HU, Samonte HP (1997) Role of rice in mediating methane emission. Plant and Soil 189: 107-115 Wang MY, Siddiqi MY, Ruth TJ, Glass A (1993) Ammonium uptake by rice roots (I. fluxes and subcellular distribution of 13NH4+. Plant Physiology 103: 1249-1258 Wang R, Tischner R, Gutierrez RA, Hoffman M, Xing X, Chen N, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiology 136: 2512-2522 Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees 17: 359-366 Wiesler F (1997) Agronomical and physiological aspects of ammonium and nitrate nutrition of plants. Journal of Plant Nutrition and Soil Science 160: 227-238 Xu CM, Wang DY, Chen S, Chen LP, Zhang XF (2013) Effects of aeration on root physiology and nitrogen metabolism in rice. Rice Science 20: 148-153 Yamazaki M, Watanabe A, Sugiyama T (1986) Nitrogen-regulated accumulation of mRNA and protein for photosynthetic carbon assimilating enzymes in maize. Plant Cell Physiology 27: 443-452 Zhang PW, Luo JK, Chen W, Shen QR (2006) Influence of NO3- ∶ NH4+ ratio on growth and chlorophyll content in pakchoi. Plant Nutrition and Fertilizer Science 12: 711-716 Zhao F, Xu C, Zhang WJ, Zhang XF, Cheng JP, Wang DY (2011) Effects of rhizosphere dissolved oxygen and nitrogen form on root characteristics and nitrogen accumulation of rice. Chinese Journal of Rice Science 25: 195-200 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60402 | - |
| dc.description.abstract | 氮素為植物最重要的營養元素之一,氮素同化對於作物發育及產量有極大的影響,本研究之主要目的為了解不同光強度對於水稻幼苗氮素吸收及同化的影響,並進一步探究光強度與養液氮素於調控氮源轉運蛋白及氮素同化酵素活性之交感作用,以及水耕液通氣處理對水稻幼苗氮素同化之影響。將催芽3天後的水稻幼苗置入生長箱中並處理不同光強度至第12天,研究結果顯示,高光強 (450 μmol m-2 s-1) 下生長的水稻幼苗相較於低光強 (50 μmol m-2 s-1) 處理生長勢較佳、銨硝態氮吸收效率上升、根部屬於高親和轉運系統之硝酸轉運蛋白OsNRT2.1、OsNRT2.2及銨轉運蛋白OsAMT1.1基因表現量上升、地上部及根部硝酸鹽還原酶 (Nitrate reductase; NR )和穀氨醯胺還原酶 (Glutamine synthetase; GS) 酵素活性上升、蛋白質及可溶性醣類含量增加。低光下養液外加蔗糖或2-OG之試驗發現,NR及GS活性皆會受誘導而增強。此外,高光強生長下之幼苗處理光合作用抑制劑DCMU時, NR和GS活性降低,如同低光強條件下生長之幼苗一般,而處理DCMU後再外加蔗糖則酵素活性會再受誘導而上升,因此推測高光強促進水稻幼苗氮素同化是透由光合產物(如:蔗糖)所調控。高光強下,缺氮處理會抑制NR和GS活性、降低蛋白質含量,缺氮下可溶性醣類分配至根部累積而促進根生長,但在低光強下氮濃度之影響不顯著。以銨態氮為單一氮源培養之水稻苗根系重量低於混合氮源栽培苗,而全硝酸態氮處理促進水稻根系延長,相較於銨或硝之單一氮源,混合氮對於根部NR及GS活性在高光強下具促進效果。此外,通氣處理可增進水稻幼苗對銨硝態氮之吸收及GS活性,進而促進生長。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:17:18Z (GMT). No. of bitstreams: 1 ntu-102-R99621103-1.pdf: 3225277 bytes, checksum: b9aa1415fa51b367c9bbf86fd26e4278 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝......................................................i
中文摘要..................................................ii Abstract................................................iii 目錄.....................................................iv 圖表目錄.................................................vii 附表目錄................................................viii 縮寫對照表................................................ix 前言 1.植物對氮素吸收同化之機制...................................1 2.光照影響氮代謝之機制......................................3 3.氮素對植物碳、氮代謝之影響.................................4 4.根系氧濃度對植物生長及氮代謝之影響..........................6 5.本論文之研究主題.........................................7 材料與方法 1.植物材料及栽培處理........................................8 2.光強度對水稻幼苗氮素吸收同化影響之分析.......................8 3.基因表現分析............................................13 4.蔗糖對水稻幼苗氮素同化酵素之影響............................15 5.2-OG對水稻幼苗氮素同化酵素之影響...........................15 6.光強變化對水稻幼苗氮素同化酵素之影響.........................15 7.不同光強下氮素對水稻幼苗氮素吸收及同化之交互影響...............16 8.通氣處理對水稻幼苗氮素吸收及同化之影響.......................16 結果 1.光強度對水稻幼苗生長、氮素吸收及同化之影響....................17 1.1光強度對水稻苗外觀形態及生長勢之影響........................17 1.2光強度對水稻苗銨、硝態氮吸收之影響..........................17 1.3不同光強度處理對水稻幼苗OsNRTs及OsAMTs之基因表現分析.........18 1.4光強度對水稻幼苗NR、GS酵素活性之影響.......................18 1.5光強度對水稻幼苗可溶性醣類含量與總蛋白含量之影響..............18 2.蔗糖對水稻幼苗氮素同化酵素活性之影響.........................19 2.1光強50 μmol m-2 s-1下外加蔗糖處理........................19 2.2光強450 μmol m-2 s-1下外加DCMU及蔗糖處理.................19 3.2-OG對水稻幼苗氮素同化酵素活性之影響影響.....................19 4.光強變化對水稻幼苗氮素同化酵素活性之影響......................20 5.不同光強下氮素濃度對水稻幼苗氮素吸收及同化之交互影響............20 5.1不同光強下氮素濃度對水稻幼苗生長勢之影響.....................20 5.2不同光強下氮素濃度處理對水稻幼苗NR與GS活性之影響………...........21 5.3不同光強下氮素濃度處理對水稻幼苗可溶性醣類及總蛋白質含量之影響...21 6.不同光強下氮源種類對水稻幼苗外觀形態及生長勢之影響..............21 6.1不同光強下氮源種類對水稻幼苗生長勢之影響.....................21 6.2不同光強下氮源種類對水稻幼苗銨硝態氮吸收效率之影響.............22 6.3不同光強下氮源種類對水稻幼苗NR、 GS活性、可溶性醣類含量與總蛋白含量之影響......................................................22 7.通氣處理對水稻幼苗生長、氮素吸收及同化之影響…..................22 7.1通氣處理對水稻幼苗外觀形態及生質量之影響.....................22 7.2通氣處理對銨硝態氮吸收效率、NR、GS活性、與總蛋白質的影響。......23 討論 1.光強度對水稻幼苗氮素吸收同化的影響與原因......................24 2.醣類及2-OG對氮素同化酵素之調控..............................24 3.光強與氮濃度交互作用對氮素同化的影響..........................25 4.光強與氮素形態交互作用對氮素同化的影響........................26 5.探討通氣處理增進植株生長及氮素同化之機制......................27 6.結語及未來展望...........................................28 參考文獻..................................................52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光強 | zh_TW |
| dc.subject | 氮素吸收 | zh_TW |
| dc.subject | 氮素同化 | zh_TW |
| dc.subject | 通氣 | zh_TW |
| dc.subject | 水稻 | zh_TW |
| dc.subject | light intensity | en |
| dc.subject | nitrogen uptake | en |
| dc.subject | nitrogen assimilation | en |
| dc.subject | aeration | en |
| dc.subject | rice | en |
| dc.title | 光強度、氮素與通氣處理對水稻幼苗氮素吸收及同化之影響 | zh_TW |
| dc.title | Effects of Light Intensity, Nitrogen and Aeration on Nitrogen Uptake and Assimilation in Rice Seedlings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉開溫(Kai-Wun Yeh),洪傳揚(Chwan-Yang Hong),黃文理(Wen-Lii Huang),陳仁治(Jen-Chin Chen) | |
| dc.subject.keyword | 光強,氮素吸收,氮素同化,通氣,水稻, | zh_TW |
| dc.subject.keyword | light intensity,nitrogen uptake,nitrogen assimilation,aeration,rice, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-17 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
