請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧彥文(Yen-Wen Lu) | |
| dc.contributor.author | Yu-Bo Tsai | en |
| dc.contributor.author | 蔡宇博 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:16:43Z | - |
| dc.date.available | 2018-09-25 | |
| dc.date.copyright | 2013-09-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-18 | |
| dc.identifier.citation | Arnold, M. A. and M. E. Meyerhoff. 1988. Recent Advances in the Development and Analytical Applications of Biosensing Probes. C R C Critical Reviews in Analytical Chemistry 20:149-196.
Arunasalam, G. and M. N. Pearson. 1989. ELISA Detection of Odontoglossum Ringspot Virus in Mature Plants and Protocorms of Cymbidium Orchids: Potential Solutions to Problems of Sample Preparation Time and Low Virus Concentration. Journal of Phytopathology 126:160-166. Batchman, L. 2008. Detecting virus in orchids. ORCHID AILMENTS Berger, R., E. Delamarche, H. P. Lang, C. Gerber, J. K. Gimzewski, E. Meyer and H.-J. Güntherodt. 1997. Surface Stress in the Self-Assembly of Alkanethiols on Gold. Science 276:2021-2024. Boisen, A., M. Calleja, A. Johansson and P. A. Rasmussen. 2005. SU-8 cantilever sensor system with integrated readout. Boltovets, P. M., B. A. Snopok, V. R. Boyko, T. P. Shevchenko, N. S. Dyachenko and Y. M. Shirshov. 2004. Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. Journal of Virological Methods 121:101-106. Boltovets, P. M., B. A. Snopok, V. R. Boyko, T. P. Shevchenko, N. S. Dyachenko and Y. M. Shirshov. 2004. Detection of plant viruses using a surface plasmon resonance via complexing with specific antibodies. Journal of virological methods 121:101-106. Botus, D. and T. Oncescu. 2006. Optimizing immunoenzymatic reactions (ELISA) for the detection of antibody against Newcastle Disease virus. Analele Universitatii din Bucuresti- Chimie Anul XV (serie noua) 2:33-41. Case, J. T., A. A. Ardans, D. C. Bolton and B. J. Reynolds. 1983. Optimization of Parameters for Detecting Antibodies against Infectious Bronchitis Virus Using an Enzyme-Linked Immunosorbent Assay: Temporal Response to Vaccination and Challenge with Live Virus. Avian Diseases 27:196-210. Chapman, S. N. 1998. Tobamovirus isolation and RNA extraction. In 'Methods in Molecular Biology; Plant virology protocols: From virus isolation to transgenic resistance', ed. G. D. T. S. C. Foster, 123-129. Chen, C. S., S. Kuan, T. H. Chang, C. C. Chou, S. W. Chang and L. S. Huang. 2011. Microcantilever biosensor: sensing platform, surface characterization and multiscale modeling. Smart. Struct. Syst. 8:17-37. Cheng, L., Hsun. 2012. A CMOS-BioMEMS Cantilever Sensor for Orchid Virus Detection Clark, M. F. and A. N. Adams. 1977. Characteristics of the microplate method of Enzyme-Linked Immunosorbent Assay for the detection of plant viruses. Journal of General Virology 34:9. Eun, A. J.-C., L. Huang, F.-T. Chew, S. F.-Y. Li and S.-M. Wong. 2002. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. Journal of Virological Methods 99:71-79. Eun, A. J.-C., L. Huang, F.-T. Chew, S. F.-Y. Li and S.-M. Wong. 2002. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. Journal of virological methods 99:71-79. Fang, Y. D., A. Z. Guo and C. L. Lin. 2013. Review and prospect of Orchid industry in Taiwan. Taiwan Flower Industry 20-28. Hildebrandt, S., H. Steinhart and A. Paschke. 2008. Comparison of different extraction solutions for the analysis of allergens in hen's egg. Food Chemistry 108:1088-1093. Kuan, S. and L. S. Huang. 2008. A platform of CMOS MEMS Microcantilever for Chemical and Biochemical Detection. Lang, H. P., R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, C. Gerber, J. K. Gimzewski, J. P. Ramseyer, E. Meyer and H.-J. Guntherodt. 1998. Sequential position readout from arrays of micromechanical cantilever sensors. Applied Physics Letters 72:383-385. Lang, H. P., M. Hegner and C. Gerber. 2010. Springer Handbook of Nanotechnology. 427-452. Lee, S.-C. and Y.-C. Chang. 2008. Performances and application of antisera produced by recombinant capsid proteins of Cymbidium mosaic virus and Odontoglossum ringspot virus. Eur J Plant Pathol 122:297-306. Lee, S. and Y. Chang. 2006. Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathology Bulletin 15:187-196. Liedberg, B., C. Nylander and I. Lunström. 1983. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4:299-304. Mark, S. 2002. Microarray Analysis. McCammon, J. A. 1998. Theory of biomolecular recognition. Current Opinion in Structural Biology 8:245-249. Mello, L. D. and L. T. Kubota. 2002. Review of the use of biosensors as analytical tools in the food and drink industries. Food Chemistry 77:237-256. Moulin, A. M., S. J. O'Shea, R. A. Badley, P. Doyle and M. E. Welland. 1999. Measuring Surface-Induced Conformational Changes in Proteins. Langmuir 15:8776-8779. Nashida, N., W. Satoh, J. Fukuda and H. Suzuki. 2007. Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions. Biosensors and Bioelectronics 22:3167-3173. Sader, J. E. 1998. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics 84:64-76. Sader, J. E., J. W. M. Chon and P. Mulvaney. 1999. Calibration of rectangular atomic force microscope cantilevers. Review of Scientific Instruments 70:3967-3969. Sader, J. E., J. A. Sanelli, B. D. Adamson, J. P. Monty, X. Wei, S. A. Crawford, J. R. Friend, I. Marusic, P. Mulvaney and E. J. Bieske. 2012. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Review of Scientific Instruments 83:103705. Strachan, T. and A. P. Read. 1999. PCR, DNA sequencing and in vitro mutagenesis. Human molecular Genetics TexasInstrument. 2002. Analysis of the Sallen-Key Architecture. Tsai, H.-H., C.-F. Lin, Y.-Z. Juang, I. L. Wang, Y.-C. Lin, R.-L. Wang and H.-Y. Lin. 2010. Multiple type biosensors fabricated using the CMOS BioMEMS platform. Sensors and Actuators B: Chemical 144:407-412. Yen, Y.-K., C.-Y. Huang, C.-H. Chen, C.-M. Hung, K.-C. Wu, C.-K. Lee, J.-S. Chang, S. Lin and L.-S. Huang. 2009. A novel, electrically protein-manipulated microcantilever biosensor for enhancement of capture antibody immobilization. Sensors and Actuators B: Chemical 141:498-505. Zettler, F. W., N. J. W. Ko, G. C. , M. S. Elliott and S. M. Wong. 1990. Viruses of orchids and their control. Plant Disease 74:621-627. Zhuang, J. G. 2005. Phalaenopsis in Taiwan. NEW TAIWAN Zourob, M. 2010. Recognition Receptors in Biosensors. 3-45. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60378 | - |
| dc.description.abstract | 蘭花為台灣非常具有代表性的經濟作物。據統計,2012年蘭花出口總值為一億六千萬美金。故關於蘭花培養照護和出口前的品質把關相當地重要,因此如果能快速而準確的檢測出蘭花病毒,對台灣蘭花產業會有相當的助益。本論文致力於利用壓阻機制之微懸臂樑開發出一具有快速、低成本及可攜式的蘭花病毒感測器。本研究選擇齒舌蘭輪斑病毒(Odontoglossum ringspot tobamovirus,ORSV)做為檢測目標,因其為感染蘭花最為嚴重的病毒之一,造成蘭花出口產業重大經濟損失。
本研究使用惠斯通電橋電路設計(Wheatstone bridge),將懸臂樑上因生物鍵結導致的阻值變化轉變為電壓訊號變化,再利用後端濾波放大電路將訊號濾波放大以利判讀檢測結果。利用整合於電橋中的參考懸臂樑,所測得的訊號得以更真實反應生物分子間在懸臂樑表面的專一性辨識所導致懸臂樑造成的形變 (Deflection)。本研究中使用ORSV-IgG為生物標定物 (Bio-marker),利用自組裝分子技術 (Self-assembly monolayer, SAM)將其固定在微懸臂樑表面,隨後將ORSV 病毒注入使其產生生物專一性結合。本感測器檢測極限經實驗量測為50 ng/μl且擁有良好的專一性 (Specificity)。 由於壓阻式懸臂樑感測器會有電流持續通過懸臂樑導致熱雜訊相對嚴重,針對此問題本研究使用間隔量測(discrete measurement)來做改善。而對於複合材料懸臂樑機械性質的量測(彈性係數),本論文亦測試及比較不同的量測方法包括靜態及動態量測方式。 此懸臂樑式生物感測器是基於台積電CMOS-MEMS 2P4M製程加上BioMEMS後製程所製成,配合簡單的電路設計可擁有不需額外標記、快速、和可攜式等優點,並具備成為即時現場照護(point-of-care)檢測平台之潛力。 | zh_TW |
| dc.description.abstract | This thesis is devoted to develop a rapid, low-cost, portable device for on-site diagnosis of Odontoglossum ringspot tobamovirus (ORSV), one of the most prevalent viruses in Orchids. Orchids are the most important economic crops in Taiwan; it has more than 164 million of US dollars in export value in 2012. The cantilever sensor with piezoresistive mechanism possesses the advantage of portable, rapid and accuracy that can be utilized in on-site virus detection.
Wheatstone bridge with signal readout system is used to detect the small bio-signal. By integrating reference cantilevers as mechanical filter in the sensor, the detection result is more reliable since the signal change is mostly contributed from biomolecule-recognition between ORSV antibody and antigen. The ORSV detection limit of the cantilever sensor was measured at 50 ng/μl and showed great specificity. One of the problems in piezoresistive cantilever biosensor is thermal drift problem since the electric currents flowing through the piezoresistors, caused additional heat dissipation. The discrete measurement was designed to solve the problem. Different methods of characterize the stiffness of composite cantilever were also conducted and compare in the thesis. The device further adapts commercially-available TSMC 0.35 2P4M CMOS technology with BioMEMS post-processes, showing its potential as a low-cost, rapid, label-free and point-of-care (POC) device for orchid virus (ORSV) detection. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:16:43Z (GMT). No. of bitstreams: 1 ntu-102-R00631026-1.pdf: 2336306 bytes, checksum: 1479ba6d6d755be1963262fb5a8d5fbd (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv Table of Contents vi List of Figures x List of Tables xi Nomenclature xiii Chapter 1 Introduction 1 1.1 Motivation and Innovation 1 1.1.1 Diagnosis of Orchid Virus 2 1.1.2 Current Technology for Orchid Virus Detection 3 1.2 MEMS Technology in Bio-detection 3 1.3 Thesis Organization 5 Chapter 2 Literature Review 6 2.1 Biomolecule-Recognition 6 2.2 Current Bio-detection Technology 8 2.3 Basic Working Principle of Biosensors 13 2.4 Microcantilever Biosensors 14 2.4.1 Microcantilever-based Transduction Principle 14 2.4.2 Cantilever Deflection Detection Techniques 15 2.5 CMOS MEMS cantilever 17 2.6 The Important of Reference Cantilever 18 Chapter 3 Piezoresistive Cantilever Biosensor 22 3.1 Experimental Set-up of the Piezoresistive Cantilever Biosensor 23 3.2 Design of Piezoresistive Cantilever Biosensor 24 3.2.1 Fabrication of Piezoresistive Cantilever Biosensor 24 3.2.2 Design of Cantilever Sensor Chip 25 3.3 Characterization of Piezoresistive Cantilever Biosensor 28 3.4 Design of Electrical Circuit 34 3.4.1 Bridge Circuit 35 3.4.2 Amplifier 38 3.4.3 Low Pass Filter 39 3.5 Environmental Noises 41 3.6 Package of the Cantilever Biosensor 44 3.7 Experimental Procedures 47 3.7.1 Detection of ORSV 47 3.7.2 Optimization on the Antibody Concentration 48 Chapter 4 Result and Discussion 51 4.1 Statistic of the Piezoresistive Cantilever Chip 51 4.2 Characterization of Piezoresistive Cantilever 53 4.2.1 Stiffness of the Cantilever 53 4.2.2 Piezoresistivity of the Cantilever 54 4.3 Improvement of the Environmental Noises 55 4.4 ORSV Detection 59 4.4.1 Optimization of ORSV-antibody Concentration 60 4.4.2 Signal Evolution 62 4.4.3 The Detection Limit of the Cantilever Biosensor 63 4.4.4 Specificity of the Cantilever Biosensor 65 Chapter 5 Conclusion and Future Work 66 5.1 Conclusion 66 5.2 Future Works 67 Reference 69 Appendix A: Layout of the Cantilever Chip 72 Appendix B: Preparation of Bio-sample 73 B1 Preparation of ORSV-IgG 73 B2 Virus Source and Maintenance 73 B3 ORSV Particle Purification 74 | |
| dc.language.iso | en | |
| dc.subject | CMOS-MEMS | zh_TW |
| dc.subject | 生物感測器 | zh_TW |
| dc.subject | 壓阻 | zh_TW |
| dc.subject | 齒舌蘭輪斑病毒 | zh_TW |
| dc.subject | 自組裝分子 | zh_TW |
| dc.subject | 微懸臂樑 | zh_TW |
| dc.subject | CMOS-MEMS | en |
| dc.subject | cantilever biosensor | en |
| dc.subject | piezoresistive | en |
| dc.subject | Odontoglossum ringspot tobamovirus | en |
| dc.title | CMOS-BioMEMS製程之壓阻式懸臂樑蘭花病毒感測器 | zh_TW |
| dc.title | A CMOS-BioMEMS Cantilever Sensor with Piezoresistive Mechanism for Orchid Virus Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張雅君,陳林祈,盧奕璋 | |
| dc.subject.keyword | 微懸臂樑,生物感測器,壓阻,齒舌蘭輪斑病毒,自組裝分子,CMOS-MEMS, | zh_TW |
| dc.subject.keyword | cantilever biosensor,piezoresistive,Odontoglossum ringspot tobamovirus,CMOS-MEMS, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
