請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6034
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方偉宏(Woei-Horng Fang) | |
dc.contributor.author | Chia-Chia Lee | en |
dc.contributor.author | 李珈嘉 | zh_TW |
dc.date.accessioned | 2021-05-16T16:19:44Z | - |
dc.date.available | 2014-02-25 | |
dc.date.available | 2021-05-16T16:19:44Z | - |
dc.date.copyright | 2014-02-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-11-20 | |
dc.identifier.citation | 1. Nguyen, T., D. Brunson, C.L. Crespi, B.W. Penman, J.S. Wishnok, and S.R.Tannenbaum, DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci U S A, 1992. 89(7): p. 3030-4.
2. Karran, P. and T. Lindahl, Hypoxanthine in deoxyribonucleic acid: generation by heat-induced hydrolysis of adenine residues and release in free form by a deoxyribonucleic acid glycosylase from calf thymus. Biochemistry, 1980. 19(26): p. 6005-11. 3. Lindahl, T., Instability and decay of the primary structure of DNA. Nature, 1993. 362(6422): p. 709-15. 4. Ponnamperuma, C., R.M. Lemmon, E.L. Bennett, and M. Calvin, Deamination of Adenine by Ionizing Radiation. Science, 1961. 134(3472): p. 113. 5. Frederico, L.A., T.A. Kunkel, and B.R. Shaw, A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry, 1990. 29(10): p. 2532-7. 6. Hill-Perkins, M., M.D. Jones, and P. Karran, Site-specific mutagenesis in vivo by single methylated or deaminated purine bases. Mutat Res, 1986. 162(2): p. 153-63. 7. Shapiro, R. and S.H. Pohl, The reaction of ribonucleosides with nitrous acid. Side products and kinetics. Biochemistry, 1968. 7(1): p. 448-55. 8. Lucas, L.T., D. Gatehouse, and D.E. Shuker, Efficient nitroso group transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at physiological pH. A new pathway for N-nitrosocompounds to exert genotoxicity. J Biol Chem, 1999. 274(26): p. 18319-26. 9. Myrnes, B., P.H. Guddal, and H. Krokan, Metabolism of dITP in HeLa cell extracts, incorporation into DNA by isolated nuclei and release of hypoxanthine from DNA by a hypoxanthine-DNA glycosylase activity. Nucleic Acids Res, 1982. 10(12): p. 3693-701. 10. Pang, B., J.L. McFaline, N.E. Burgis, M. Dong, K. Taghizadeh, M.R. Sullivan, C.E. Elmquist, R.P. Cunningham, and P.C. Dedon, Defects in purine nucleotide metabolism lead to substantial incorporation of xanthine and hypoxanthine into DNA and RNA. Proc Natl Acad Sci U S A, 2012. 109(7): p. 2319-24. 11. Sakumi, K., N. Abolhassani, M. Behmanesh, T. Iyama, D. Tsuchimoto, and Y. Nakabeppu, ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res, 2010. 703(1): p. 43-50. 12. Budke, B. and A. Kuzminov, Hypoxanthine incorporation is nonmutagenic in Escherichia coli. J Bacteriol, 2006. 188(18): p. 6553-60. 13. Martin, F.H., M.M. Castro, F. Aboul-ela, and I. Tinoco, Jr., Base pairing involving deoxyinosine: implications for probe design. Nucleic Acids Res, 1985. 13(24): p. 8927-38. 14. Watkins, N.E., Jr. and J. SantaLucia, Jr., Nearest-neighbor thermodynamics of deoxyinosine pairs in DNA duplexes. Nucleic Acids Res, 2005. 33(19): p.6258-67. 15. Sakumi, K. and M. Sekiguchi, Structures and functions of DNA glycosylases. Mutat Res, 1990. 236(2-3): p. 161-72. 16. Dianov, G. and T. Lindahl, Preferential recognition of I.T base-pairs in the initiation of excision-repair by hypoxanthine-DNA glycosylase. Nucleic Acids Res, 1991. 19(14): p. 3829-33. 17. Dehazya, P. and M.A. Sirover, Regulation of hypoxanthine DNA glycosylase in normal human and Bloom's syndrome fibroblasts. Cancer Res, 1986. 46(8): p. 3756-61. 18. Saparbaev, M. and J. Laval, Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A, 1994. 91(13): p. 5873-7. 19. Berdal, K.G., M. Bjoras, S. Bjelland, and E. Seeberg, Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene. EMBO J, 1990. 9(13): p. 4563-8. 20. O'Connor, T.R. and F. Laval, Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase. EMBO J, 1990. 9(10): p.3337-42. 21. O'Connor, T.R. and J. Laval, Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem Biophys Res Commun, 1991. 176(3): p. 1170-7. 22. Miao, F., M. Bouziane, and T.R. O'Connor, Interaction of the recombinant human methylpurine-DNA glycosylase (MPG protein) with oligodeoxyribonucleotides containing either hypoxanthine or abasic sites. Nucleic Acids Res, 1998. 26(17): p. 4034-41. 23. Saparbaev, M., J.C. Mani, and J. Laval, Interactions of the human, rat, Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA glycosylases with DNA containing dIMP residues. Nucleic Acids Res, 2000.28(6): p. 1332-9. 24. Sidorkina, O., M. Saparbaev, and J. Laval, Effects of nitrous acid treatment on the survival and mutagenesis of Escherichia coli cells lacking base excision repair (hypoxanthine-DNA glycosylase-ALK A protein) and/or nucleotide excision repair. Mutagenesis, 1997. 12(1): p. 23-8. 25. Schouten, K.A. and B. Weiss, Endonuclease V protects Escherichia coli against specific mutations caused by nitrous acid. Mutat Res, 1999. 435(3): p. 245-54. 26. Guo, G., Y. Ding, and B. Weiss, nfi, the gene for endonuclease V in Escherichia coli K-12. J Bacteriol, 1997. 179(2): p. 310-6. 27. Gates, F.T., 3rd and S. Linn, Endonuclease V of Escherichia coli. J Biol Chem, 1977. 252(5): p. 1647-53. 28. Gates, F.T. and S. Linn, Endonuclease from Escherichia coli that acts specifically upon duplex DNA damaged by ultraviolet light, osmium tetroxide, acid, or x-rays. J Biol Chem, 1977. 252(9): p. 2802-7. 29. Demple, B. and S. Linn, On the recognition and cleavage mechanism of Escherichia coli endodeoxyribonuclease V, a possible DNA repair enzyme. J Biol Chem, 1982. 257(6): p. 2848-55. 30. Yao, M., Z. Hatahet, R.J. Melamede, and Y.W. Kow, Purification and characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' endonuclease, from Escherichia coli. J Biol Chem, 1994. 269(23): p. 16260-8. 31. Yao, M. and Y.W. Kow, Strand-specific cleavage of mismatch-containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem, 1994. 269(50): p. 31390-6. 32. Yao, M. and Y.W. Kow, Interaction of deoxyinosine 3'-endonuclease from Escherichia coli with DNA containing deoxyinosine. J Biol Chem, 1995. 270(48): p. 28609-16. 33. Yao, M. and Y.W. Kow, Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem, 1996. 271(48): p. 30672-6. 34. Liu, J., B. He, H. Qing, and Y.W. Kow, A deoxyinosine specific endonuclease from hyperthermophile, Archaeoglobus fulgidus: a homolog of Escherichia coli endonuclease V. Mutat Res, 2000. 461(3): p. 169-77. 35. Huang, J., J. Lu, F. Barany, and W. Cao, Multiple cleavage activities of endonuclease V from Thermotoga maritima: recognition and strand nicking mechanism. Biochemistry, 2001. 40(30): p. 8738-48. 36. Feng, H., A.M. Klutz, and W. Cao, Active site plasticity of endonuclease V from Salmonella typhimurium. Biochemistry, 2005. 44(2): p. 675-83. 37. Moe, A., J. Ringvoll, L.M. Nordstrand, L. Eide, M. Bjoras, E. Seeberg, T. Rognes, and A. Klungland, Incision at hypoxanthine residues in DNA by a mammalian homologue of the Escherichia coli antimutator enzyme endonuclease V. Nucleic Acids Res, 2003. 31(14): p. 3893-900. 38. Mi, R., M. Alford-Zappala, Y.W. Kow, R.P. Cunningham, and W. Cao, Human endonuclease V as a repair enzyme for DNA deamination. Mutat Res, 2012. 735(1-2): p. 12-8. 39. Fladeby, C., E.S. Vik, J.K. Laerdahl, C. Gran Neurauter, J.E. Heggelund, E. Thorgaard, P. Strom-Andersen, M. Bjoras, B. Dalhus, and I. Alseth, The human homolog of Escherichia coli endonuclease V is a nucleolar protein with affinity for branched DNA structures. PLoS One, 2012. 7(11): p. e47466. 40. Mi, R., A.K. Abole, and W. Cao, Dissecting endonuclease and exonuclease activities in endonuclease V from Thermotoga maritima. Nucleic Acids Res, 2010. 39(2): p. 536-44. 41. Guo, G. and B. Weiss, Endonuclease V (nfi) mutant of Escherichia coli K-12. J Bacteriol, 1998. 180(1): p. 46-51. 42. Weiss, B., Removal of deoxyinosine from the Escherichia coli chromosome as studied by oligonucleotide transformation. DNA Repair (Amst), 2008. 7(2): p.205-12. 43. Lee, C.C., Y.C. Yang, S.D. Goodman, Y.H. Yu, S.B. Lin, J.T. Kao, K.S. Tsai, and W.H. Fang, Endonuclease V-mediated deoxyinosine excision repair in vitro. DNA Repair (Amst), 2010. 9(10): p. 1073-9. 44. Kow, Y.W., Repair of deaminated bases in DNA. Free Radic Biol Med, 2002.33(7): p. 886-93. 45. Feng, H., L. Dong, A.M. Klutz, N. Aghaebrahim, and W. Cao, Defining amino acid residues involved in DNA-protein interactions and revelation of 3'-exonuclease activity in endonuclease V. Biochemistry, 2005. 44(34): p.11486-95. 46. He, B., H. Qing, and Y.W. Kow, Deoxyxanthosine in DNA is repaired by Escherichia coli endonuclease V. Mutat Res, 2000. 459(2): p. 109-14. 47. Burgis, N.E., J.J. Brucker, and R.P. Cunningham, Repair system for noncanonical purines in Escherichia coli. J Bacteriol, 2003. 185(10): p. 3101-10. 48. Chou, K.M. and Y.C. Cheng, An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3' mispaired DNA. Nature, 2002. 415(6872): p. 655-9. 49. Constantinou, A., X.B. Chen, C.H. McGowan, and S.C. West, Holliday junction resolution in human cells: two junction endonucleases with distinct substrate specificities. EMBO J, 2002. 21(20): p. 5577-85. 50. Joyce, C.M. and N.D. Grindley, Method for determining whether a gene of Escherichia coli is essential: application to the polA gene. J Bacteriol, 1984.158(2): p. 636-43. 51. Makiela-Dzbenska, K., M. Jaszczur, M. Banach-Orlowska, P. Jonczyk, R.M. Schaaper, and I.J. Fijalkowska, Role of Escherichia coli DNA polymerase I in chromosomal DNA replication fidelity. Mol Microbiol, 2009. 74(5): p. 1114-27. 52. Okazaki, R., M. Arisawa, and A. Sugino, Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Natl Acad Sci U S A, 1971. 68(12): p. 2954-7. 53. Goodman, M.F., Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A, 1997. 94(20): p. 10493-5. 54. Carver, T.E., Jr., R.A. Hochstrasser, and D.P. Millar, Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I. Proc Natl Acad Sci U S A, 1994. 91(22): p. 10670-4. 55. Aboul-ela, F., D. Koh, I. Tinoco, Jr., and F.H. Martin, Base-base mismatches. Thermodynamics of double helix formation for dCA3XA3G + dCT3YT3G (X, Y = A,C,G,T). Nucleic Acids Res, 1985. 13(13): p. 4811-24. 56. Lam, W.C., E.J. Van der Schans, L.C. Sowers, and D.P. Millar, Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Biochemistry, 1999. 38(9): p. 2661-8. 57. Fang, W., J.Y. Wu, and M.J. Su, Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli. J Biol Chem, 1997. 272(36): p. 22714-20. 58. Lu, A.L., S. Clark, and P. Modrich, Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A, 1983. 80(15): p. 4639-43. 59. Klapacz, J., L.B. Meira, D.G. Luchetti, J.A. Calvo, R.T. Bronson, W. Edelmann, and L.D. Samson, O6-methylguanine-induced cell death involves exonuclease 1 as well as DNA mismatch recognition in vivo. Proc Natl Acad Sci U S A, 2009. 106(2): p. 576-81. 60. Lahue, R.S., K.G. Au, and P. Modrich, DNA mismatch correction in a defined system. Science, 1989. 245(4914): p. 160-4. 61. O'Brien, P.J. and T. Ellenberger, The Escherichia coli 3-methyladenine DNA glycosylase AlkA has a remarkably versatile active site. J Biol Chem, 2004. 279(26): p. 26876-84. 62. Derbyshire, V., N.D. Grindley, and C.M. Joyce, The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J, 1991. 10(1): p. 17-24. 63. Derbyshire, V., P.S. Freemont, M.R. Sanderson, L. Beese, J.M. Friedman, C.M. Joyce, and T.A. Steitz, Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. Science, 1988. 240(4849): p.199-201. 64. Kucera, R.B. and N.M. Nichols, DNA-dependent DNA polymerases. Curr Protoc Mol Biol, 2008. Chapter 3: p. Unit3 5. 65. Bebenek, K., C.M. Joyce, M.P. Fitzgerald, and T.A. Kunkel, The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem, 1990. 265(23): p. 13878-87. 66. Timms, A.R., H. Steingrimsdottir, A.R. Lehmann, and B.A. Bridges, Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis. Mol Gen Genet, 1992. 232(1):p. 89-96. 67. Deutscher, M.P., C.W. Marlor, and R. Zaniewski, Ribonuclease T: new exoribonuclease possibly involved in end-turnover of tRNA. Proc Natl Acad Sci U S A, 1984. 81(14): p. 4290-3. 68. Li, Z. and M.P. Deutscher, The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci U S A, 1995. 92(15): p. 6883-6. 69. Li, Z., S. Pandit, and M.P. Deutscher, Maturation of 23S ribosomal RNA requires the exoribonuclease RNase T. RNA, 1999. 5(1): p. 139-46. 70. Hsiao, Y.Y., Y. Duh, Y.P. Chen, Y.T. Wang, and H.S. Yuan, How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic Acids Res, 2012. 40(16): p. 8144-54. 71. Yao, M. and Y.W. Kow, Further characterization of Escherichia coli endonuclease V. Mechanism of recognition for deoxyinosine, deoxyuridine, and base mismatches in DNA. J Biol Chem, 1997. 272(49): p. 30774-9. 72. Dalhus, B., A.S. Arvai, I. Rosnes, O.E. Olsen, P.H. Backe, I. Alseth, H. Gao, W. Cao, J.A. Tainer, and M. Bjoras, Structures of endonuclease V with DNA reveal initiation of deaminated adenine repair. Nat Struct Mol Biol, 2009. 16(2): p. 138-43. 73. Morales, J.C. and E.T. Kool, Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I. Biochemistry, 2000. 39(10): p. 2626-32. 74. Ohshima, H. and H. Bartsch, Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res, 1994. 305(2): p. 253-64. 75. Ohshima, H., M. Tatemichi, and T. Sawa, Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys, 2003. 417(1): p.3-11. 76. Yasui, M., E. Suenaga, N. Koyama, C. Masutani, F. Hanaoka, P. Gruz, S. Shibutani, T. Nohmi, M. Hayashi, and M. Honma, Miscoding properties of 2'-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion 77. Yasui, M., N. Suzuki, H. Miller, T. Matsuda, S. Matsui, and S. Shibutani, Translesion synthesis past 2'-deoxyxanthosine, a nitric oxide-derived DNA adduct, by mammalian DNA polymerases. J Mol Biol, 2004. 344(3): p. 665-74. 78. Cao, W., Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci, 2012. 70(17): p. 3145-56. 79. Uesugi, S., Y. Oda, M. Ikehara, Y. Kawase, and E. Ohtsuka, Identification of I:A mismatch base-pairing structure in DNA. J Biol Chem, 1987. 262(15): p.6965-8. 80. Case-Green, S.C. and E.M. Southern, Studies on the base pairing properties of deoxyinosine by solid phase hybridisation to oligonucleotides. Nucleic Acids Res, 1994. 22(2): p. 131-6. 81. Friedberg, E.C., Walker, G.C., Siede, W. (2006) DNA repair and Mutagenesis. 82. Wang, Yi-Ting (2010) The repair patch mapping of endonuclease V-mediated alternative excision repair of deoxyinosine in vitro. Master Thesis in Chinese. 83. Chen, Yi-An (2011) Proofreading activity of DNA pol I to substrate containing heterologies within template-primer junction. Master Thesis in Chinese. 84. Lin, Chien-Ju (2012) The proofreading spectrum of DNA polymerase I to the different single mismatches at 3’-penultimate site of the primer. Master Thesis in Chinese. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6034 | - |
dc.description.abstract | 在一般的生理狀態下,腺嘌呤的脫氨作用會自發性地進行且將其變成亞黃嘌呤。當 DNA 暴露在離子化輻射、紫外光、亞硝酸或是加熱的環境下,會促進此脫氨作 用的進行並且會產生具有高致突變性的脫氧肌苷。倘若 DNA 中的脫氧肌苷未被修 復,則可能會有 A:T→G:C
同類置換的突變產生。在大腸桿菌中,脫氧肌苷的清除 主要是由內切酶五(endonuclease V, endo V)所啟始的修復作用來負責。在本研 究中,我們利用噬菌體 M13mp18 及 f1PM 衍生的異雙股 DNA 來進一步探討脫氧肌苷 的修復反應,而且這些 M13mp18 及 f1PM 的異雙股 DNA 於特定的限制酶辨認序列或 是切位均帶有脫氧肌苷。未被修復的脫氧肌苷異雙股 DNA 可以抵抗其相對應的限 制酶的作用,如此即可利用此特性來評估脫氧肌苷的修復程度。我們利用不同基 因突變的大腸桿菌的蛋白質萃取物及純化蛋白的系統來探討修復脫氧肌苷所需的因子及機制,比較三種帶有脫氧肌苷的異雙股 DNA 受質(A-I, T-I, 及 G-I)的修復 差異。實驗結果顯示 DNA 聚合酶一(DNA polymerase I, Pol I)的 3’端往 5’端 的外切酶活性對於修復脫氧肌苷是相當重要的。為了瞭解 DNA 聚合酶一對於移除 損壞核苷酸的特性,我們系統性地分析 DNA 聚合酶一對於 12 種位於斷股倒數第二個位置的鹼基錯誤配對的校正活性,如此錯誤配對的結構即相當於內切酶五作用 後的中間產物。實驗結果顯示,位於斷股倒數第二個位置的錯誤配對及脫氧肌苷都能夠被修復,這樣的實驗結果為我們的論點提供強烈的支持,即在內切酶五對 受質 DNA 產生斷股後,DNA 聚合酶一的 3’端往 5’端的外切酶活性是主要用來移除位於斷股倒數第二個位置的脫氧肌苷的外切酶。本研究所提出的由內切酶五所主導的脫氧肌苷切除修復的模擬路徑如下所述:首先由內切酶五將脫氧肌苷靠近 3’ 端的第二個磷酸雙酯鍵打斷並啟始修復反應的進行,接著由 DNA 聚合酶一的 3’端往 5’端的外切酶活性將脫氧肌苷等核苷酸移除,核苷酸的缺口再由 DNA 聚合酶一進行聚合,最後則由 DNA 連接酶(ligase)完成修復反應。 | zh_TW |
dc.description.abstract | Deamination of adenine can occur spontaneously under physiological conditions, and give hypoxanthine. This process is enhanced by exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat, generating the highly mutagenic lesion deoxyinosine in DNA. Such DNA lesion tends to generate A:T to G:C transition mutation if unrepaired. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway initiated by endonuclease V (endo V). In this study, correction of dI lesions was
investigated using M13mp18 or f1PM derived heteroduplex containing a deoxyinosine resided in the recognition site or cleavage site of specific restriction endonuclease. Unrepaired G-I heteroduplex was first found to be refractory to the cleavage of corresponding restriction endonuclease markers, therefore G-I was used to evaluate the repair dI lesions. Cell-free extracts from various E. coli mutants were used to investigate the deoxyinosine repair requirement and mechanism. We further compared the repair of three mutagenic deoxyinosine lesions A-I, G-I, and T-I using E. coli cell-free extracts as well as reconstituted protein system. We found that 3'-5' exonuclease activity of DNA polymerase I (Pol I) was very important for processing the deoxyinosine lesions. To understand the nature of Pol I in removing damaged nucleotides, we systemically analyzed its proofreading activity to 12 possible mismatches 3'-penultimate to a nick, a configuration that represents a repair intermediate generated by endo V. The results showed all mismatches as well as deoxyinosine at the 3' penultimate site were corrected with similar efficiency, which strongly support the idea that the 3'-5' exonuclease activity of E. coli Pol I is the primary exonuclease activity for removing 3'-penultimate deoxyinosines derived from endo V nicking reaction. In our proposed model of endo V-mediated excision repair, the repair of dI is initiated by endo V generated strand break at the second phosphodiester bond 3’ to the dI lesion. The subsequent removal of the damaged base is performed by the 3’-5’ exonuclease activity of DNA polymerase I. Finally, the gap is filled and sealed by DNA polymerase I and DNA ligase respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:19:44Z (GMT). No. of bitstreams: 1 ntu-102-D97424002-1.pdf: 11891347 bytes, checksum: 7bc2c8ecc82a77e15d32844378128403 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract II List of Tables VI List of Figures VII Abbreviation IX 1. Introduction 1.1. The occurrence of deoxyinosine………………………………1 1.2. Base pairing of deoxyinosine…………………………………2 1.3. Hypoxanthine DNA glycosylase…………………………………3 1.4. Endonuclease V……………………………………………………4 1.5. Proofreading of DNA polymerase I……………………………8 2. Materials and methods 2.1. Materials……………………………………………………………… 11 2.2. Preparation of double-stranded (replicative form) bacteriophage DNA…………………………………………………… 11 2.3. Preparation of single-stranded bacteriophage DNA……………………………………………………………………… 12 2.4. Construction of M13mp18- and f1PM-derived phage mutants………………………………………………………………… 12 2.5. Construction of deoxyinosine-containing heteroduplex DNA……………………………………………………………………… 12 2.6. Construction of heteroduplex containing a single mismatch at 3’ penultimate site of a nick……………………13 2.7. Preparation of E. coli cell-free extracts…………………………………………………………………14 2.8. In vitro repair assay using bacterial cell-free extracts…………………………………………………………………14 2.9. Site-specific endonuclease V incision assay……………15 2.10. Endonuclease V nicking assay………………………………15 2.11. Reconstituted endouclease V-mediated deoxyinosine excision repair……………………………………………………… 16 2.12. Reconstituted uracil DNA glycosylase-mediated uracil excision repair……………………………………………………… 16 2.13. Reconstituted RNase T-mediated deoxyinosine excision repair……………………………………………………………………17 2.14. DNA proofreading assay………………………………………17 2.15. Sodium nitrite-induced mutagenesis………………………18 3. Results 3.1. Construction of a heteroduplex substrate in which a deoxyinosine resides in a disrupted restriction endonuclease recognition site…………………………………… 20 3.2. Site-specific incision of the deoxyinosine-containing heteroduplex by recombinant endonuclease V……………………20 3.3. Endonuclease V-mediated excision repair in bacterial cell-free extracts……………………………………………………21 3.4. Reconstitution of endonuclease V-mediated repair in vitro…………………………………………………………………… 23 3.5. Turnover of endonuclease V in the reconstitution assay system……………………………………………………………………25 3.6. Construction of A-I and T-I heteroduplex substrates………………………………………………………………25 3.7. Processing mutagenic deoxyinosine lesions in bacterial cell-free extracts……………………………………………………27 3.8. Reconstitution of endonuclease V-mediated excision repair for A-I, G-I, and T-I heterologies…………………… 29 3.9. Construction of a heteroduplex in which a mismatch resides in a disrupted restriction endonuclease recognition site………………………………………………………………………31 3.10. Correction of 3’ penultimate mismatches of the primer by DNA polymerase I…………………………………………32 3.11. Correcting 3’ penultimate mismatches of the primer is not by non-specific nick translation……………………… 33 3.12. Specificity analysis of proofreading of a 3’ penultimate mismatch kinetic assay………………………………34 3.13. A deoxyinosine at the 3’ penultimate site of the primer is corrected as efficiently as a mismatch……………35 3.14. The 3’-exonuclease of DNA polymerase I showed an anti-mutator effect under nitrosative stress…………………35 3.15. The 3’-exonuclease activity of RNaseT was involved in processing deoxyinosine in endonuclease V-mediated repair reaction……………………………………………………… 37 4. Discussion 4.1. Proposed model of endo V-mediated excision repair……40 4.2. Turnover of endonuclease V………………………………… 41 4.3. Proofreading of base mismatches……………………………42 4.4. Deoxyinosine lesions in mammalian cells…………………43 5. Conclusion………………………………………………………… 45 Tables……………………………………………………………………46 Figures………………………………………………………………… 53 References………………………………………………………………79 Appendices………………………………………………………………86 Publications……………………………………………………………88 | |
dc.language.iso | en | |
dc.title | 大腸桿菌內切酶五系統對亞黃嘌呤修復之試管中研究 | zh_TW |
dc.title | In vitro study of deoxyinosine repair by endonuclease V-mediated pathway in Escherichia coli | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 高照村,楊雅倩,許濤,蔡芷季 | |
dc.subject.keyword | 腺嘌呤,脫氧肌?,亞黃嘌呤,鹼基錯誤配對,脫氨作用,核酸修復,核酸校正, | zh_TW |
dc.subject.keyword | Deoxyinosine,Hypoxanthine,Mismatch,Endonuclease V,DNA polymerase I,Sodium nitrite, | en |
dc.relation.page | 108 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-11-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf | 11.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。