Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6033
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌
dc.contributor.authorWan-Yu Lienen
dc.contributor.author連宛渝zh_TW
dc.date.accessioned2021-05-16T16:19:42Z-
dc.date.available2013-08-14
dc.date.available2021-05-16T16:19:42Z-
dc.date.copyright2013-08-14
dc.date.issued2013
dc.date.submitted2013-08-07
dc.identifier.citation1.Abbott, M. B., Bathurst, J. C., Cunge, J. A., Oconnell, P. E., & Rasmussen, J. (1986a). An Introduction to the European Hydrological System - Systeme Hydrologique Europeen, She .1. History and Philosophy of a Physically-Based, Distributed Modeling System. J Hydrol, 87(1-2), 45-59.
2.Abbott, M. B., Bathurst, J. C., Cunge, J. A., Oconnell, P. E., & Rasmussen, J. (1986b). An Introduction to the European Hydrological System - Systeme Hydrologique Europeen, She .2. Structure of a Physically-Based, Distributed Modeling System. J Hydrol, 87(1-2), 61-77.
3.Alcamo, J., Heinrichs, T., & Rösch, T. (2000). World Water in 2025—Global Modeling and Scenario Analysis for the 21st Century
4.Center for Environmental Systems Research.
5.Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419(6903), 224-232.
6.Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment - Part 1: Model development. J Am Water Resour As, 34(1), 73-89.
7.Bridges, T. C., & Haan, C. T. (1972). Reliability of Precipitation Probabilities Estimated from the Gamma Distribution. Mon Weather Rev, 100(8), 607-611.
8.Burton, I., Malone, E., & Huq, S. (2004). Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures (B. Lim & E. Spanger-Siegfried Eds.): United Nations Development Programme, Cambridge University Press, Cambridge, UK.
9.Castellvi, F., Mormeneo, I., & Perez, P. J. (2004). Generation of daily amounts of precipitation from standard climatic data: a case study for Argentina. J Hydrol, 289(1-4), 286-302.
10.Chow, Ven Te, Maidment, David R., & Mays, Larry W. (1988). Applied hydrology. New York: McGraw-Hill.
11.Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P., & Palmer, R. N. (2004). The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62(1-3), 337-363.
12.Cole, J. A., Slade, S., Jones, P. D., & Gregory, J. M. (1991). Reliable Yield of Reservoirs and Possible Effects of Climatic-Change. Hydrolog Sci J, 36(6), 579-598.
13.Development, United States Agency for International. (2007). Adapting To Climate variability and Change: A Guidance Manual For Development Planning.
14.Dubrovsky, M., Nemesova, I., & Kalvova, J. (2005). Uncertainties in climate change scenarios for the Czech Republic. Clim Res, 29(2), 139-156.
15.Eum, H. I., & Simonovic, S. P. (2010). Integrated Reservoir Management System for Adaptation to Climate Change: The Nakdong River Basin in Korea. Water Resour Manag, 24(13), 3397-3417.
16.Faramarzi, M., Abbaspour, K. C., Vaghefi, S. A., Farzaneh, M. R., Zehnder, A. J. B., Srinivasan, R., & Yang, H. (2013). Modeling impacts of climate change on freshwater availability in Africa. J Hydrol, 480, 85-101.
17.Feyen, L., & Dankers, R. (2009). Impact of global warming on streamflow drought in Europe. J Geophys Res-Atmos, 114, Artn D17116.
18.Forrester, Jay Wright. (1961). Industrial dynamics. [Cambridge, Mass.]: M.I.T. Press.
19.Forrester, Jay Wright. (1969). Urban dynamics. Cambridge, Mass.: M.I.T. Press.
20.Fowler, H. J., Kilsby, C. G., & Stunell, J. (2007). Modelling the impacts of projected future climate change on water resources in north-west England. Hydrol Earth Syst Sc, 11(3), 1115-1124.
21.Frederick, K. D., & Major, D. C. (1997). Climate change and water resources. Climatic Change, 37(1), 7-23.
22.Green, W. H., & Ampt, G. A. (1911). Studies on soil physics Part I - The flow of air and water through soils. J Agr Sci, 4, 1-24.
23.Haith, D. A., & Shoemaker, L. L. (1987). Generalized Watershed Loading Functions for Stream-Flow Nutrients. Water Resour Bull, 23(3), 471-478.
24.Halmova, D., & Melo, M. (2006). Climate change impact on reservoir water supply reliability IAHS Publication 308 (pp. 407-412). Wallingford: IAHS Press.
25.Haman, W. R. (1961). Estimating potential evapotranspiration. Journal of Hydraulics Division, 83(7), 107-120.
26.Hansen, J. W. (2002). Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agr Syst, 74(3), 309-330.
27.He, J., Valeo, C., & Bouchart, F. J. C. (2006). Enhancing urban infrastructure investment planning practices for a changing climate. Water Sci Technol, 53(10), 13-20.
28.Huff, F. A. (1967). Time Distribution of Rainfall in Heavy Storms. Water Resour Res, 3(4), 1007-&.
29.IPCC. (2007). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
30.Kang, B., & Ramirez, J. A. (2007). Response of streamflow to weather variability under climate change in the Colorado Rockies. J Hydrol Eng, 12(1), 63-72.
31.Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., James, P., Smith, A., & Wilby, R. L. (2007). A daily weather generator for use in climate change studies. Environ Modell Softw, 22(12), 1705-1719.
32.Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680.
33.Lettenmaier, D. P., Wood, A. W., Palmer, R. N., Wood, E. F., & Stakhiv, E. Z. (1999). Water resources implications of global warming: A US regional perspective. Climatic Change, 43(3), 537-579.
34.Li, H. B., Sheffield, J., & Wood, E. F. (2010). Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J Geophys Res-Atmos, 115, Artn D10101.
35.Loukas, A., Vasiliades, L., & Dalezios, N. R. (2002). Potential climate change impacts on flood producing mechanisms in southern British Columbia, Canada using the CGCMA1 simulation results. J Hydrol, 259(1-4), 163-188.
36.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of State Calculations by Fast Computing Machines. J Chem Phys, 21(6), 1087-1092.
37.Mimikou, M. A., Baltas, E., Varanou, E., & Pantazis, K. (2000). Regional impacts of climate change on water resources quantity and quality indicators. J Hydrol, 234(1-2), 95-109.
38.Monteith, J.L. (1965). Evaporation and environment. In: The State and Movement of Water in Living Organisms. Paper presented at the Proc. 15th Symposium Society for Experimental Biology, Swansea. Cambridge University Press, London.
39.Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747-756.
40.Murdoch, P. S., Baron, J. S., & Miller, T. L. (2000). Potential effects of climate chance on surface-water quality in North America. J Am Water Resour As, 36(2), 347-366.
41.Murphy, J. (1999). An evaluation of statistical and dynamical techniques for downscaling local climate. J Climate, 12(8), 2256-2284.
42.Narasimhan, B., Srinivasan, R., Arnold, J. G., & Di Luzio, M. (2005). Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. T Asae, 48(3), 1101-1113.
43.Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. J Hydrol, 10(3), 282-290.
44.Nash, L. L., & Gleick, P. H. (1991). Sensitivity of Streamflow in the Colorado Basin to Climatic Changes. J Hydrol, 125(3-4), 221-241.
45.Nash, L. L., & Gleick, P. H. (1993). The Colorado River Basin and climatic change: the sensitivity of streamflow and water supply to variations in temperature and precipitation. US Environmental Protection Agency.
46.Nearing, M. A., Liu, B. Y., Risse, L. M., & Zhang, X. (1996). Curve numbers and green-ampt effective hydraulic conductivities. Water Resour Bull, 32(1), 125-136.
47.Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2009). Soil and Water Assessment Tool Theorical Documentation Version 2009. Texas A&M University System: Texas Water Resources Unstitute Technical
48.Park, G. A., Ahn, S. R., Lee, Y. J., Shin, H. J., Park, M. J., & Kim, S. J. (2009). Assessment of Climate Change Impact on the Inflow and Outflow of Two Agricultural Reservoirs in Korea. T Asabe, 52(6), 1869-1883.
49.Payne, J. T., Wood, A. W., Hamlet, A. F., Palmer, R. N., & Lettenmaier, D. P. (2004). Mitigating the effects of climate change on the water resources of the Columbia River Basin. Climatic Change, 62(1-3), 233-256.
50.Pickering, N. B., Stedinger, J. R., & Haith, D. A. (1988). Weather Input for Nonpoint-Source Pollution Models. J Irrig Drain E-Asce, 114(4), 674-690.
51.Pilgrim, D. H., & Cordery, I. (1975). Rainfall Temporal Patterns for Design Floods. J Hydr Eng Div-Asce, 101(Nhy1), 81-95.
52.Powell, D. N., Khan, A. A., Aziz, N. M., & Raiford, J. P. (2007). Dimensionless rainfall patterns for South Carolina. J Hydrol Eng, 12(1), 130-133.
53.Protopapas, A. L., Katchamart, S., & Platonova, A. (2000). Weather Effects on Daily Water Use in New York City. J Hydrol Eng, 5(3), 332-338.
54.Racsko, P., Szeidl, L., & Semenov, M. (1991). A Serial Approach to Local Stochastic Weather Models. Ecol Model, 57(1-2), 27-41.
55.Richardson, C. W. (1981). Stochastic Simulation of Daily Precipitation, Temperature, and Solar-Radiation. Water Resour Res, 17(1), 182-190.
56.Richardson, C.W, & Wright, D.A. (1984). WGEN: A model for generating daily weather variables. : US Department of Agriculture, Agricultural Research Service,.
57.Rutter, A. J., Robins, P. C., Morton, A. J., & Kershaw, K. A. (1972). A Predictive Model of Rainfall Interception in Forests, .1. Derivation of Model from Observations in a Plantation of Corsican Pine. Agr Meteorol, 9(5-6), 367-384.
58.Selker, J. S., & Haith, D. A. (1990). Development and Testing of Single-Parameter Precipitation Distributions. Water Resour Res, 26(11), 2733-2740.
59.Semenov, M. A., & Brooks, R. J. (1999). Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Clim Res, 11(2), 137-148.
60.Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim Res, 10(2), 95-107.
61.Senhorst, H. A. J., & Zwolsman, J. J. G. (2005). Climate change and effects on water quality: a first impression. Water Sci Technol, 51(5), 53-59.
62.Solomon, S., Qin, D., Manning, M., & Marquis, M. and others (eds). (2007). Climate change 2007: the physical science basis contribution of Working Group I to the fourth assessment report of the Intergovermental Panel on Climate Change.: Cambridge University Press, New York.
63.Takara, Kaoru, Kim, Sunmin, Tachikawa, Yasuto, & Nakakita, Eiichi. (2009). Assessing Climate Change Impact onWater Resources in the Tone River Basin, Japan, Using Super-High-Resolution Atmospheric Model Output. Journal of Disaster Research, 4(1), 12-23.
64.Thodsen, H. (2007). The influence of climate change on stream flow in Danish rivers. J Hydrol, 333(2-4), 226-238.
65.Tung, C. P. (1995). The Impact of Land Use and Climate Changes on Streamflows and Corn Grain Yields and the Effects of Corn Production Response Strategies. (PHD Thesis), Cornell University, New York.
66.Tung, C. P., & Haith, D. A. (1995). Global-Warming Effects on New-York Streamflows. J Water Res Pl-Asce, 121(2), 216-225.
67.UKCIP. (2010). The UKCIP Adaptation Wizard V 3.0.: UKCIP, Oxford.
68.Vlcek, O., & Huth, R. (2009). Is daily precipitation Gamma-distributed? Adverse effects of an incorrect use of the Kolmogorov-Smirnov test. Atmos Res, 93(4), 759-766.
69.Wegehenkel, M., & Kersebaum, K. C. (2009). An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in Northeast Germany. J Plant Nutr Soil Sc, 172(6), 737-744.
70.Whetton, P.H., McInnes, K.L., Jones, R.N., Hennessy, K.J., Suppiah, R., Page, C.M., Bathols, J., & P., Durack. (2005). Climate change projections for Australia for impact assessment and policy application: A review. CSIRO Marine and Atmospheric Research
71.Wilby, R. L., Whitehead, P. G., Wade, A. J., Butterfield, D., Davis, R. J., & Watts, G. (2006). Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J Hydrol, 330(1-2), 204-220.
72.Wilks, D. S., & Wilby, R. L. (1999). The weather generation game: a review of stochastic weather models. Prog Phys Geog, 23(3), 329-357.
73.Wu, K. S., & Johnston, C. A. (2007). Hydrologic response to climatic variability in a Great Lakes Watershed: A case study with the SWAT model. J Hydrol, 337(1-2), 187-199.
74.Xu, Y. P., Zhang, X. J., Ran, Q. H., & Tian, Y. (2013). Impact of climate change on hydrology of upper reaches of Qiantang River Basin, East China. J Hydrol, 483, 51-60.
75.Yen, B. C., & Chow, V. T. (1980). Design Hyetographs for Small Drainage Structures. J Hydr Eng Div-Asce, 106(6), 1055-1076.
76.行政院經濟建設委員會. (2012). 國家氣候變遷調適政策綱領.
77.何宜昕. (2010). 建立氣候變遷對石門水庫供水與防洪能力之影響評估方法. 國立臺灣大學生物環境系統工程學研究所碩士論文.
78.吳至剛. (2000). 氣候變遷對高屏溪流域水資源衝擊之探討. 國立成功大學水利及海洋工程學系碩士論文.
79.卓盈旻, & 盧孟明. (2009). IPCC第四期評估報告氣候模式對亞洲夏季季風模擬之分析. 大氣科學, 37(2), 13-33.
80.林俊成、李國忠. (2000). 全球溫暖化對畢祿溪試驗集水區河川流量衝擊評估. 台灣林業科學, 15(1), 51-60.
81.林能暉. (2007). IPCC第一工作分組之第四次評估報告:科學基礎 第二章“大氣成分和輻射驅動力的改變”之重點說明. 全球變遷通訊雜誌(55), 1-5.
82.洪念民. (1997). 氣候變遷對大安溪水資源營運之影響. 國立臺灣大學農業工程學研究所碩士論文.
83.徐享崑. (2006). 水源調配與水庫管理. 2006閻振興教授論壇-台灣當前水利問題對策與展望論文集, B1-B10.
84.徐嘉君, & 林淑華. (2008). 全球氣候變遷模式推估與情境模擬簡介. 林業研究專訊, 15(2), 5-7.
85.財團法人農業工程研究中心. (2003). 桃園農田水利會於石門水庫之水權與歷年實際取用水量探討. 財團法人桃園農田水利研究發展基金會.
86.國立台灣大學水工試驗所. (1990). 石門水庫操作模式與自動化監控系統規劃.
87.國家災害防救科技中心. (2010). 臺灣氣候變遷推估與資訊平台建置計畫(2/3): 行政院國家科學委員會.
88.許恩菁. (1999). 設計暴雨雨型序率模式之研究. 國立台大學農業工程學研究所碩士論文.
89.許振崑, 林伯勳, 鄭錦桐, 冀樹勇, 黃文洲, & 尹孝元. (2009). 石門水庫集水區土壤沖蝕量評估及現地試驗監測. 第十三屆海峽兩岸水利科技交流研討會.
90.連宛渝. (2000). 氣候變遷對台灣水稻灌漑需水量及潛能量之影響. 國立臺灣大學農業工程學硏究所碩士論文.
91.連宛渝, 童慶斌, 何宜昕, 戴嘉慧, & 莊立昕. (2013). 建立環流模式推估能力評比之方法. 農業工程學報, 59(1), 1-14.
92.陳正達, 許晃雄, 盧孟明, 隨中興, 周佳, 翁叔平, 陳昭銘, 林傳堯, 鄭兆尊, 朱容練, 吳宜昭, 卓盈旻, 陳重功, 張雅茹, 林士堯, 林修立, 童裕翔, & 楊承道. (2011). 未來氣候變遷推估 2011:臺灣氣候變遷科學報告2011: 政院國家科學委員會.
93.陳明業. (2002). 淡水河水資源系統動力模式與永續管理策略之硏究. 國立臺灣大學生物環境系統工程學研究所碩士論文.
94.童慶斌. (2001). 系統動態模式建構概論. 環境系統動態理論與應用研習會.
95.童慶斌. (2010). 氣候變遷對灌溉系統之衝擊與脆弱度評估方法之建立. 行政院農業委員會.
96.童慶斌. (2012). 氣候變遷與生態環境課程講義: 國立台灣大學生物環境系統工程學系.
97.童慶斌、吳明進、張斐章、李明旭、柳文成、謝龍生. (2002). 氣候變化綱要公約國家通訊衝擊調適資料建置-氣候、水文、生態部分(一). 行政院環境保護署專題研究計畫報告.
98.童慶斌、李宗祐. (2001). 氣候變遷對七家灣溪流量之影響評估. 農業工程學報, 47(1), 65-74.
99.童慶斌、洪念民、陳主惠. (1999). 氣候變遷對水資源影響評估與適應策略研擬. 中國農業工程學報, 45(4), 73-90.
100.經濟部水利規劃試驗所. (2012). 強化北部水資源分區因應氣候變遷水資源管理調適能力研究.
101.經濟部水利署. (2009a). 臺灣北部區域水資源經理基本計畫.
102.經濟部水利署. (2009b). 臺灣地區水資源需求潛勢評估及經理策略檢討.
103.經濟部水利署. (2011). 石門水庫運用要點.
104.經濟部水利署. (2012a). 中華民國100年水利統計.
105.經濟部水利署. (2012b). 國家氣候變遷調適行動方案- 水資源領域.
106.經濟部水資源局. (2001). 水文設計應用手冊.
107.葉弘德, & 韓洪元. (1990). 台北市暴雨雨型之研究. 台灣水利, 38(3), 36-49.
108.詹麗梅. (2001). 區域供水系統系統動力模型建立與策略評估-以大基隆供水區為例. 國立台灣海洋大學河海工程學系碩士論文.
109.盧孟明, 余嘉裕, 張智北, 鄭明典, 徐月娟, 呂國臣, 林昀靜, 涂建翊, 卓盈旻, & 李思瑩. (2007). 氣候變遷對災害防治衝擊調適與因應策略整合研究--子計畫:氣候變遷對台灣地區降雨及海水位變異之影響(I). 行政院國家科學委員會.
110.柳中明. (2012). http://taiwanpedia.culture.tw/web/content?ID=100572,台灣大百科全書,文化部.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6033-
dc.description.abstract臺灣地區地形特殊導致80%左右之逕流量直接入海,加上豐水期及枯水期雨量比例差異大,使得水資源之調配相當不易,氣候變遷可能導致豐枯水期降雨量改變,造成豐枯水期流量差異擴大,更加劇了供給足夠水量的困難度。為了評估氣候變遷對供水系統造成的影響,並提出調適措施以降低氣候變遷可能帶來的衝擊,必須發展氣候變遷對供水系統衝擊評估與調適能力建構之流程與工具。本研究在流程上依據聯合國發展規劃署所提出的「氣候變遷調政策略綱領」分成五大步驟,由問題界定開始,系統性的評估現況與未來的脆弱度與風險,接著提出解決問題之可能之調適策略及其評估方式,最後並持續調適措施之落實與修正。評估工具方面,本研究注重於發展可同時繁衍產生日間尺度及小時時間尺度之氣象合成模式與可同時模擬日時間尺度及小時時間尺度之水文模式,配合研究區域之水資源供水系統模式,可分析氣候變遷對供水系統之衝擊。
本研究中建立雙機率分佈之氣象合成模式,將降雨事件分為暴雨事件及一般降雨事件,利用暴雨事件發生機率決定降雨日之降雨量是否為暴雨事件,並採用不同的機率分佈描述暴雨及非暴雨事件之降雨,模式中利用Huff法建立雨型,當發生暴雨事件時可配合雨型之挑選決定24小時之雨量。此外,研究中建立以Green-Ampt法計算入滲量與結合水平衡運算之水文模式,該模式可計算以日為時間尺度之河川流量,亦可配合雙機率分佈之氣象合成模式提供之含有日及小時時間尺度之氣象資料,在非暴雨事件時以日為時間尺度模擬河川流量,而在暴雨事件發生時則以小時時間尺度模擬小時河川流量。配合不同時間尺度之流量資料,建立同時考慮日及小時時間尺度之水庫操作模式,在暴雨事件發生時以防洪操作進行水庫放水,而非暴雨時期為一般放水操作之水庫操作模式。
根據分析顯示,氣候變遷將使得石門水庫上游河川流量在豐水期呈現增加趨勢而枯水期呈現減少趨勢,且造成未來水庫水位之50百分位之水庫水位低於下限的旬數情況將較歷史情況為多,而各旬最大水位分析結果指出在豐水期時水庫最大水位可能超過水庫大壩安全容許之最高水位,顯示未來水庫不論是在水資源調配或是防洪操作上將面臨更加嚴格的挑戰。而氣候變遷對臺北供水區衝擊影響不大,可維持正常供水且有多餘水量可提供其他地區使用,板新供水區雖可滿足在容忍度SI為0.5之供水情形,但偶爾會有缺水事件發生,而在桃園供水區在容忍度SI為0.5的條件下,供需缺口最高達44萬噸/日,且由回復力指標可發現桃園供水區長期處在缺水的情況,加入既有策略後可提供之水量可滿足桃園供水區之需水量,但仍可能面臨短期缺水事件之風險,因此可採取埤塘、水庫清淤、淨水場供水能力增加與汰換舊漏自來水管線等慮強化方案以降低未來面臨之風險。
本研究所建立之氣象合成模式可適切的繁衍產生氣候變遷情境下之氣象資料,透過本研究建立之水文模式可模擬未來河川流量,再利用水庫操作模式可評估氣候變遷對水庫功能與供水系統之衝擊。而利用本研究之調適策略評估流程,則可有系統的分析及評估可能的衝擊與挑選可能之調適策略,以降低氣候變遷可能造成的衝擊。
zh_TW
dc.description.abstractBecause of the 80% of stream flow runs into the ocean directly and the difference of rainfall among wet and dry seasons is significant, the allocation of water resource is very challenge. In addition, the climate change may lead to the changes of rainfall and streamflow and enlarge the difference amnong wet and dry seasons. These may exacerbate the difficulty of supplying sufficient water. To reduce the impacts of climate change on the water supply system and to develop effective adaptation measures, this study follows Adaptation Policy Frameworks for Climate Change (APF) proposed by United Nations Development Programme (UNDP) and focuses on the development of novel weather generator and hydrological model. The developed weather generator can provide daily series with embeded hourly rainfall data for storm events. The proposed hydrological model can run in daily and hourly time steps depending on its input weather data. The simulated streamflows can be used as inputs for reservoir operation model and water resource system dynamics model to assess the climate change impacts.
The novel weather generator built in this study uses dual probability distributions to describe the extreme rainfall and normal rainfall events respectively. The probability of extremely rainfall event for each month is further used to decide if the rainy day is a strom event or not. Besides, the hyetographs are described by the Huff method and the 24 hourly rainfalls are generated by a selected hyetograph. On the other hand, the Green-Ampt method and water balance equations are used to develop NTU_Wtaershed Hydrological Model (NTU_WH). Not only the daily stremaflow but also the hourly dtreamflow in the extremely rainfall event days can be calculated by the NTU_WH. The reservoir operation model is also developed in this study, which can be run with different time scales. This reservoir operation model release houly flood water in the extreme rainfall event days and daily water supply in non-extreme rainfall event days.
To assess the impact and the adaptive capacity of climate change on water supply system, the adaptation strategies assessment process follows APF. APF has five major steps, including (1) defining project scope and design, (2) assessing vulnerability under current climate, (3) characterizing future climate related risks, (4) developing an adaptation strategy, and (5) continuing the adaptation process. According to the simulations of streamflow and water usage under different climate change secnarios, the vulnerability of water supply systems for different districts can be estimated. Furthermore, the apative stretageies can be evaluated to reduce the deficits of water supply and the vulnerability for different water usages.
According to the results, the inflow of Shihmen Reservoir may increase in wet season and decrease in dry season under different future climate change scenarios. These results lead to the lower reservoir storages in dry season and the maximal reservoir storage for each 10-days in the wet season may be higher than the permitted maximal storage of dam safety. The water resource reallocation or the flood mitigration may become severe in future. However, the impact of climate change on carrying capacity of Taipei city is not significant. The carrying capacity of water supply with the criterion of Shortage Index (SI) =0.5 for Banshin area is enough to meet water demands, but the events of water shortagecan still be expected. In Taoyuan water District, under the criterion of SI=0.5, the maximal deficits of water supply and demand is 440,000 tons / day. Besides, the Taoyuan area is always in the condition of insufficient water supply according to the index of resilience. Fortunately, if the planned water strategies for the Taoyuan area can be implemented, the gap between water supply and demand can be bridged. Although the gap could be filled, the risk of short-term water shortage in the Taoyuan area is still higher. The strengthening strategies could be adopted in this area are ponds, reservoirs desilting, increasing the capacity of water purification plant, and the replacement old water pipeline.
The weather generator built in this study can generate the weather series for different climate change scenarios. The streamflows can be simulated by the NTU_WH which is also developed in this study. Then, the impacts of climate change on reservoir functions can be evulated by the reservoir operation model. Besides, the adaptation strategy assessment process used in this study can assess the impacts of water supply system on climate change and evulate the possible adaptation strategies to reduce the potential impacts of climate change.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:19:42Z (GMT). No. of bitstreams: 1
ntu-102-D93622005-1.pdf: 30443803 bytes, checksum: 6b3d7f92f27c11fcf28e5c5b10f75f8d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 vii
表目錄 xi
圖目錄 xv
第一章 前言 1
1.1緣起 1
1.2研究目的 3
1.3研究架構 4
第二章 文獻回顧 7
2.1氣候變遷對水文與水資源之影響 7
2.2氣候變遷對水庫之影響 9
2.3氣候變遷下水資源的調適策略 11
2.4氣象合成模式 15
2.5水文模式 17
第三章 氣象合成模式建立 21
3.1氣候變遷情境說明 21
3.2GCMs挑選 25
3.3空間降尺度 27
3.4氣象合成模式 29
3.4.1日溫度模擬模式 30
3.4.2日降水量模擬模式 31
3.4.3不同時間尺度降水量模擬 34
3.5結果討論 42
3.5.1GCMs挑選結果 43
3.5.2氣象合成模式結果討論 50
3.5.3小結 74
第四章 水文模式 77
4.1GWLF水文模式 78
4.2NTU_WH模式 81
4.3NTU_WH_DH模式 87
4.4模式參數設定 89
4.4.1GWLF模式參數說明 89
4.4.2NTU_WH模式參數說明與檢定方法 90
4.5模式檢定驗證 93
4.5.1GWLF模式驗證 93
4.5.2NTU_WH模式 94
4.6討論 98
4.6.1GWLF模式與NTU_WH模式比較 98
4.6.2不同模式連續七天低流量比較 101
4.6.3不同時間尺度水文模式模擬比較 103
4.6.4不同氣象合成模式對流量模擬之影響 104
4.6.5小結 107
第五章 氣候變遷對水庫操作及供水系統衝擊、脆弱度與調適策略評估方法 109
5.1氣候變遷對水庫操作影響評估方法 109
5.2水資源供水系統建立 113
5.2.1系統動力模式 113
5.2.2供水承載力評估 115
5.3暴露度及脆弱度分析 120
5.3.1缺水之災害脆弱度量化 120
5.3.2氣候變遷之下各供水分區缺水脆弱度地圖製作 122
5.4水資源調適策略訂定 127
5.4.1UKCIP調適精靈 127
5.4.2多準則排序評估法 132
第六章 氣候變遷對水庫操作與供水系統衝擊、脆弱度評估與調適策略分析 135
6.1研究區域 135
6.1.1區域水資源供需情況 137
6.1.2水資源設施 138
6.2氣候變遷對水庫操作之衝擊評估 141
6.2.1氣候變遷對石門水庫入流量之影響 141
6.2.2氣候變遷對石門水庫石門水庫操作衝擊評估 143
6.3氣候變遷對各供水分區供水情形之影響評估 149
6.3.1未來水資源需求情境設定 149
6.3.2供水分區系統動力模式建立與驗證 158
6.3.3氣候變遷對水資源設施之衝擊評估 162
6.3.4氣候變遷之下各供水分區暴露度、敏感度及脆弱度地圖 166
6.4調適策略分析 186
6.4.1未來面臨問題分析 186
6.4.2調適方案規劃 191
第七章 結論與建議 213
7.1結論 213
7.2建議 215
參考文獻 219
附錄一、GWLF模式及NTU_WH模式參數 227
附錄二、不同GCMs公共給水暴露度地圖 233
附錄三、不同GCMs農業用水暴露度地圖 241
附錄四、不同GCMs生活用水脆弱度地圖 249
附錄五、不同GCMs工業用水脆弱度地圖 257
附錄六、不同GCMs農業用水脆弱度地圖 265
附錄七、不同GCMs水資源水脆弱度地圖 273
dc.language.isozh-TW
dc.title氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構zh_TW
dc.titleDevelopment of Novel Weather Generator and Hydrological Model and Adaptive Capacity Building of Water Supply System to Climate Changeen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee游保杉,吳瑞賢,李明旭,張斐章,黃文政
dc.subject.keyword氣候變遷,氣象合成模式,水文模式,水資源,脆弱度,調適能力建構,zh_TW
dc.subject.keywordClimate Change,Weather Generator,Hydrological Model,Water Resources,Vulnerability,Adaptive Capacity Building,en
dc.relation.page280
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf29.73 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved