Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60332
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李苑玲
dc.contributor.authorYu-Fu Changen
dc.contributor.author張毓夫zh_TW
dc.date.accessioned2021-06-16T10:15:44Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-18
dc.identifier.citationAhlberg K, Assavanop P, Tay W (1995). A comparison of the apical dye penetration patterns shown by methylene blue and India ink in root‐filled teeth. International Endodontic Journal 28(1):30-34.
AlAnezi AZ, Jiang J, Safavi KE, Spangberg LS, Zhu Q (2010). Cytotoxicity evaluation of endosequence root repair material. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 109(3):e122-e125.
Alhadainy HA (1994). Root Perforations - a Review of Literature. Oral Surg Oral Med O 78(3):368-374.
Allen AJ, McLaughlin JC, Neumann DA, Livingston RA (2004). In situ quasi-elastic scattering characterization of particle size effects on the hydration of tricalcium silicate. J Mater Res 19(11):3242-3254.
Arens DE, Torabinejad M (1996). Repair of furcal perforations with mineral trioxide aggregate: two case reports. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 82(1):84-88.
Arruda R, Cunha RS, Miguita KB, Silveira C, De Martin AS, Pinheiro SL et al. (2012). Sealing ability of mineral trioxide aggregate (MTA) combined with distilled water, chlorhexidine, and doxycycline. Journal of oral science 54(3):233-239.
Asgary S, Parirokh M, Eghbal MJ, Brink F (2005). Chemical differences between white and gray mineral trioxide aggregate. J Endodont 31(2):101-103.
Balto HA (2004). Attachment and morphological behavior of human periodontal ligament fibroblasts to mineral trioxide aggregate: a scanning electron microscope study. J Endod 30(1):25-29.
Barret P, Ménétrier D (1980). Filter dissolution of C3S as a function of the lime concentration in a limited amount of lime water. Cement and Concrete Research 10(4):521-534.
Belio-Reyes IA, Bucio L, Cruz-Chavez E (2009). Phase composition of ProRoot mineral trioxide aggregate by X-ray powder diffraction. J Endod 35(6):875-878.
Berger R, Lawrence F, Young J (1973). Studies on the hydration of tricalcium silicate pastes II. Strength development and fracture characteristics. Cement Concrete Res 3(5):497-508.
Brauer DS, Karpukhina N, Law RV, Hill RG (2009). Structure of fluoride-containing bioactive glasses. J Mater Chem 19(31):5629-5636.
Brinker CJ, Scherer GW, editors (1990). Sol-gel science:the physics and chemistry of sol-gel processing. Boston: Academic Press.
Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS et al. (2011). Mechanisms of cement hydration. Cement and Concrete Research 41(12):1208-1223.
Bye GC (1999). Portland cement: composition, production and properties: Thomas Telford.
Camilleri J (2008). The biocompatibility of modified experimental Portland cements with potential for use in dentistry. International endodontic journal 41(12):1107-1114.
Camilleri J (2011). Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater 27(8):836-844.
Camilleri J, Ford TRP (2008). Evaluation of the effect of tracer pH on the sealing ability of glass ionomer cement and mineral trioxide aggregate. Journal of Materials Science: Materials in Medicine 19(8):2941-2948.
Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR (2005). The constitution of mineral trioxide aggregate. Dent Mater 21(4):297-303.
Camilleri J, Pitt Ford TR (2006). Mineral trioxide aggregate: a review of the constituents and biological properties of the material. Int Endod J 39(10):747-754.
Chang SW, Baek SH, Yang HC, Seo DG, Hong ST, Han SH et al. (2011). Heavy metal analysis of ortho MTA and ProRoot MTA. J Endod 37(12):1673-1676.
Chang SW, Shon WJ, Lee W, Kum KY, Baek SH, Bae KS (2010). Analysis of heavy metal contents in gray and white MTA and 2 kinds of Portland cement: a preliminary study. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 109(4):642-646.
Cho S-B, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T et al. (1995). Dependence of Apatite Formation on Silica Gel on Its Structure: Effect of Heat Treatment. J Am Ceram Soc 78(7):1769-1774.
Chong BS, Pitt Ford TR, Watson TF, Wilson RF (1995). Sealing ability of potential retrograde root filling materials. Endodontics & dental traumatology 11(6):264-269.
Cvek M (1992). Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Endodontics & dental traumatology 8(2):45-55.
Damidot D, Bellmann F, Möser B, Sovoidnich T (2007). Calculation of the dissolution rate of tricalcium silicate in several electrolyte compositions. Obliczenie szybkości rozpuszczania krzemianu trójwapniowego w roztworach elektrolitów o różnym składzie 2):57-67.
Delivanis PD, Chapman KA (1982). Comparison and reliability of techniques for measuring leakage and marginal penetration. Oral Surgery, Oral Medicine, Oral Pathology 53(4):410-416.
El-Meligy OA, Avery DR (2006). Comparison of mineral trioxide aggregate and calcium hydroxide as pulpotomy agents in young permanent teeth (apexogenesis). Pediatric dentistry 28(5):399-404.
Filgueiras MR, La Torre G, Hench LL (1993). Solution effects on the surface reactions of a bioactive glass. Journal of biomedical materials research 27(4):445-453.
Fogel HM, Peikoff MD (2001). Microleakage of root-end filling materials. J Endodont 27(7):456-458.
Formosa LM, Mallia B, Camilleri J (2012). The effect of curing conditions on the physical properties of tricalcium silicate cement for use as a dental biomaterial. Int Endod J 45(4):326-336.
Friedman S (2005). The prognosis and expected outcome of apical surgery. Endodontic topics 11(1):219-262.
Fuss Z, Trope M (1996). Root perforations: Classification and treatment choices based on prognostic factors. Endodontics & dental traumatology 12(6):255-264.
Galmarini S, Aimable A, Ruffray N, Bowen P (2011). Changes in portlandite morphology with solvent composition: Atomistic simulations and experiment. Cement Concrete Res 41(12):1330-1338.
Gandolfi MG, Taddei P, Tinti A, Prati C (2010). Apatite-forming ability (bioactivity) of ProRoot MTA. International Endodontic Journal 43(10):917-929.
Garrault S, Nonat A (2001). Hydrated layer formation on tricalcium and dicalcium silicate surfaces: Experimental study and numerical simulations. Langmuir 17(26):8131-8138.
Garrault S, Nonat A (1999). Experimental investigation of calcium silicate hydrate (C-S-H) nucleation. Journal of Crystal Growth 200(3–4):565-574.
Gartner EM (1997). A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate. Cement Concrete Res 27(5):665-672.
Gauffinet S, Finot E, Lesniewska R, Nonat A (1998). Direct observation of the growth of calcium silicate hydrate on alite and silica surfaces by atomic force microscopy. Cr Acad Sci Ii A 327(4):231-236.
Gomes-Filho JE, Moreira JV, Watanabe S, Lodi CS, Cintra LTA, Dezan Junior E et al. (2012). Sealability of MTA and calcium hydroxidecontaining sealers. Journal of Applied Oral Science 20(3):347-351.
Hachmeister DR, Schindler WG, Walker III WA, Denee Thomas D (2002). The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J Endodont 28(5):386-390.
Hamad HA, Tordik PA, McClanahan SB (2006). Furcation perforation repair comparing gray and white MTA: a dye extraction study. J Endodont 32(4):337-340.
Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971). Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of biomedical materials research 5(6):117-141.
Hench LL, Wilson J (1984). Surface-active biomaterials. Science 226(4675):630-636.
Hornyak GL, editor (2009). Introduction to Nanoscience and Nanotechnology: CRC Press.
Islam I, Chng HK, Yap AU (2006). X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J 39(3):220-225.
Jafarnia B, Jiang J, He JN, Wang YH, Safavi KE, Zhu Q (2009). Evaluation of cytotoxicity of MTA employing various additives. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 107(5):739-744.
Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP (1977). Tissue, Cellular and Subcellular Events at a Bone-Ceramic Hydroxylapatite Interface. Journal of bioengineering 1(2):79-92.
Juenger MCG, Lamour VHR, Monteiro PJM, Gartner EM, Denbeaux GP (2003). Direct observation of cement hydration by soft X-ray transmission microscopy. Journal of Materials Science Letters 22(19):1335–1337.
Keiser K, Johnson CC, Tipton DA (2000). Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endodont 26(5):288-291.
Kettering JD, Torabinejad M (1995). Investigation of mutagenicity of mineral trioxide aggregate and other commonly used root-end filling materials. J Endod 21(11):537-542.
Kitsugi T, Yamamuro T, Nakamura T, Kokubo T (1989). The bonding of glass ceramics to bone. International orthopaedics 13(3):199-206.
Koh E, Torabinejad M, Pitt Ford T, Brady K, McDonald F (1997). Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Journal of biomedical materials research 37(3):432-439.
Kokubo T (1991). Bioactive glass ceramics: properties and applications. Biomaterials 12(2):155-163.
Kokubo T, Ito S, Huang ZT, Hayashi T, Sakka S, Kitsugi T et al. (1990a). Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W. Journal of biomedical materials research 24(3):331-343.
Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990b). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of biomedical materials research 24(6):721-734.
Kokubo T, Ohtsuki C, Kotani S, Kitsugi T, Yamamuro T (1989). Surface structure of bioactive glass-ceramic A–W implanted into sheep and human vertebra.In: Heimke G, editor.Bioceramics, vol. 2. Cologne: German Ceramic Society. p113-121.
Kokubo T, Shigematsu M, Nagashima Y, Tashiro M, Nakamura T, Yamamuro T et al. (1982). Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60(260-268.
Kokubo T, Takadama H (2006). How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907-2915.
Kokubo.T (1986). Bone bonding behavior of three kinds of apatite containing glass ceramics. Journal of biomedical materials research 20(9):1295-1307.
Lee SJ, Monsef M, Torabinejad M (1993). Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 19(11):541-544.
Lee YL, Lee BS, Lin FH, Lin AY, Lan WH, Lin CP (2004). Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials 25(5):787-793.
Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP (2007). Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. Journal of dental research 86(6):534-538.
LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003). Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci-Mater M 14(3):201-209.
Limkangwalmongkol S, Burtscher P, Abbott PV, Sandler AB, Bishop BM (1991). A comparative study of the apical leakage of four root canal sealers and laterally condensed gutta-percha. J Endodont 17(10):495-499.
Lin CP, Chen YJ, Lee YL, Wang JS, Chang MC, Lan WH et al. (2004). Effects of root-end filling materials and eugenol on mitochondrial dehydrogenase activity and cytotoxicity to human periodontal ligament fibroblasts. Journal of Biomedical Materials Research Part B 71(2):429-440.
Lin Q, Li Y, Lan X, Lu C, Chen Y, Xu Z (2009). The apatite formation ability of CaF2 doping tricalcium silicates in simulated body fluid. Biomedical Materials 4(4):045005.
Lin Q, Li YB, Lan XH, Lu CH, Xu ZZ (2008). Effect of CaF2 on Preparation and in vitro Bioactivity of Tricalcium Silicates. Chinese J Inorg Chem 24(12):1937-1942.
Liu X, Morra M, Carpi A, Li B (2008). Bioactive calcium silicate ceramics and coatings. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 62(8):526-529.
Lundquist P, Ritchie HH, Moore K, Lundgren T, Linde A (2002). Phosphate and Calcium Uptake by Rat Odontoblast-Like MRPC-1 Cells Concomitant With Mineralization. Journal of Bone and Mineral Research 17(10):1801-1813.
Martin RL, Monticelli F, Brackett WW, Loushine RJ, Rockman RA, Ferrari M et al. (2007). Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. J Endodont 33(3):272-275.
Mente J, Hage N, Pfefferle T, Koch MJ, Geletneky B, Dreyhaupt J et al. (2010). Treatment outcome of mineral trioxide aggregate: repair of root perforations. J Endod 36(2):208-213.
Morejón‐Alonso L, Ferreira OJB, Carrodeguas RG, dos Santos LA (2012). Bioactive composite bone cement based on α‐tricalcium phosphate/tricalcium silicate. Journal of Biomedical Materials Research Part B: Applied Biomaterials 100(1):94-102.
Nocun-Wczelik W (1990). Thermogravimetric studies of the tricalcium silicate hydration in the presence of solid additives. Journal of Thermal Analysis and Calorimetry 36(6):2109-2111.
Noo F, Clack R, White TA, Roney TJ (1998). The dual-ellipse cross vertex path for exact reconstruction of long objects in cone-beam tomography. Physics in medicine and biology 43(4):797-810.
Osen TB, Astrup II, Knutssøn CH (2012). Biodentine (tm) as a root-end filling.
Osorio RM, Hefti A, Vertucci FJ, Shawley AL (1998). Cytotoxicity of endodontic materials. J Endodont 24(2):91-96.
Owadally ID, Pitt Ford TR (1994). Effect of addition of hydroxyapatite on the physical properties of IRM. Int Endod J 27(5):227-232.
Oyane A, Kim HM, Furuya T, Kokubo T, Miyazaki T, Nakamura T (2003). Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A 65(2):188-195.
Portland Cement from 29Si{19F} CP-REDOR NMR Spectroscopy. American Chemical Society 131(14170-14191.
Qudeimat MA, Barrieshi-Nusair KM, Owais AI (2007). Calcium hydroxide vs mineral trioxide aggregates for partial pulpotomy of permanent molars with deep caries. European archives of paediatric dentistry : official journal of the European Academy of Paediatric Dentistry 8(2):99-104.
Rejda BV, Peelen JG, de Groot K (1977). Tri-calcium phosphate as a bone substitute. Journal of bioengineering 1(2):93-97.
Reyes-Carmona JF, Felippe MS, Felippe WT (2009). Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid. J Endod 35(5):731-736.
Roy DM, Oyefesobi SO (1977). Preparation of Very Reactive Ca2sio4 Powder. J Am Ceram Soc 60(3-4):178-180.
Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003). Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A 66(1):110-119.
Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL et al. (2004). Binary CaO-SiO(2) gel-glasses for biomedical applications. Bio-medical materials and engineering 14(4):467-486.
Schäfer E, Olthoff G (2002). Effect of three different sealers on the sealing ability of both thermafil obturators and cold laterally compacted Gutta-Percha. J Endodont 28(9):638-642.
Schembri M, Peplow G, Camilleri J (2010). Analyses of heavy metals in mineral trioxide aggregate and Portland cement. J Endod 36(7):1210-1215.
Segal D (1991). Chemical synthesis of advanced ceramic materials: Cambridge University Press.
Silva DA, Monteiro PJM (2005). Hydration evolution of C3S–EVA composites analyzed by soft X-ray microscopy. Cement and Concrete Research 35(2):351-357.
Slegers PA, Rouxhet PG (1977). The hydration of tricalcium silicate: Calcium concentration and portlandite formation. Cement and Concrete Research 7(1):31-38.
Stephan D, Dikoundou SN, Raudaschl-Sieber G (2008). Influence of combined doping of tricalcium silicate with MgO, Al(2)O(3) and Fe(2)O(3): synthesis, grindability, X-ray diffraction and (29)Si NMR. Mater Struct 41(10):1729-1740.
Takadama H, Hashimoto M, Mizuno M, Kokubo T (2004). Round-robin test of SBF for in vitro measurement of apatite-forming ability of synthetic materials. Phosphorus Research Bulletin 17: 119-125
Tamse A, Katz A, Kablan F (1998). Comparison of apical leakage shown by four different dyes with two evaluating methods. International endodontic journal 31(5):333-337.
Tanomaru Filho M, Figueiredo FA, Tanomaru JM (2005). Effect of different dye solutions on the evaluation of the sealing ability of Mineral Trioxide Aggregate. Brazilian oral research 19(2):119-122.
Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN (2007). Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod 33(11):1347-1351.
Thomson TS, Berry JE, Somerman MJ, Kirkwood KL (2003). Cementoblasts maintain expression of osteocalcin in the presence of mineral trioxide aggregate. J Endodont 29(6):407-412.
Torabinejad M, Ford TRP (1996). Root end filling materials: A review. Endodontics & dental traumatology 12(4):161-178.
Torabinejad M, Hong C, McDonald F, Pitt Ford T (1995). Physical and chemical properties of a new root-end filling material. J Endodont 21(7):349-353.
Torabinejad M, Hong CU, Mcdonald F, Ford TRP (1995). Physical and Chemical-Properties of a New Root-End Filling Material. J Endodont 21(7):349-353.
Torabinejad M, Pitt Ford TR (1996). Root end filling materials: a review. Endodontics & dental traumatology 12(4):161-178.
Torabinejad M, Watson TF, Pitt Ford TR (1993). Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 19(12):591-595.
Torabinejad M, White DJ (1995). Tooth filling material and method of use.
Toriyama M, Kawamura S, Kawamoto Y, Suzuki T, Yokogawa Y, Ebihara S (1990). Estimation of biocompatibility of high strength β-tricalcium phosphate ceramics by a tissue culture method. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan 98(4):404-407.
Tziafas D, Smith AJ, Lesot H (2000). Designing new treatment strategies in vital pulp therapy. Journal of Dentistry 28(2):77-92.
Urabe K, Nakano H, Morita H (2002). Structural modulations in monoclinic tricalcium silicate solid solutions doped with zinc oxide, M (I), M (II), and M (III). J Am Ceram Soc 85(2):423-429.
White SN, Akhparyan E, Kutshenko D, Torabinejad M (2007). Endodontics and tooth retention. The International journal of prosthodontics 20(4):343-344.
Wiltbank KB, Schwartz SA, Schindler WG (2007). Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 33(10):1235-1238.
WU MK, Wesselink P (1993). Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. International endodontic journal 26(1):37-43.
Xu (2011). Preparation and in vitro bioactivity of zinc incorporating tricalium silicate. Mat Sci Eng C-Bio S 31 (3):629-636.
Yoshikawa M, Noguchi K, Toda T (1997). Effect of particle sizes in India ink on its use in evaluation of apical seal. Journal of Osaka Dental University 31(1-2):67.
Zhao G, Wang Z, Lei X, Gong C, Wang H, Chen L (2004). [In-situ sol-gel preparation of nano silica porous layer capillary columns and their applications in gas chromatography]. Chinese journal of chromatography / Zhongguo hua xue hui 22(2):158-161.
Zhao W, Chang J (2008). Two-step precipitation preparation and self-setting properties of tricalcium silicate. Materials Science and Engineering: C 28(2):289-293
.
Zhao W, Wang J, Zhai W, Wang Z, Chang J (2005). The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26(31):6113-6121.
Zhao W, Wang J, Zhai W, Wang Z, Chang J (2005). The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26(31):6113-6121.
Zhao WY, Chang J (2004). Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powders. Mater Lett 58(19):2350-2353.
Zhao WY, Chang J (2008). Two-step precipitation preparation and self-setting properties of tricalcium silicate. Mat Sci Eng C-Bio S 28(2):289-293.
Zhu Q, Haglund R, Safavi KE, Spangberg LS (2000). Adhesion of human osteoblasts on root-end filling materials. J Endodont 26(7):404-406.
王偉全 (2011). 研發新型溶膠-凝膠三鈣矽酸鹽於牙髓病治療之應用. Taiwan, 國立台灣大學.
李苑玲 (2006). 鈣矽生醫陶瓷在牙髓病治療之研發與應用. Taiwan, 國立台灣大學.
洪秉琁 (2012). 溶膠凝膠鈣矽酸鹽之表面生物活性與生物相容性之探討. Taiwan, 國立台灣大學.
莊雅茜 (2012). 生醫材料三鈣矽酸鹽之合成及結構鑑定 (2012-07-20). Taiwan, 國立台灣大學.
蔡郁馨 (2010). 鈣矽生醫陶瓷材料之開發及其合成機制之固態核磁共振研究. Taiwan, 國立台灣大學.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60332-
dc.description.abstract以鈣矽酸鹽為主成分的三氧礦化聚合物(Mineral trioxide aggregate, MTA),是目前最普遍使用在根管修補治療的材料,但其硬化時間過長是臨床應用上的缺點。為了改善MTA的缺點,我們的研究團隊分別以溶膠-凝膠法(sol-gel technique)研發製備孔洞性的溶膠-凝膠三鈣矽酸鹽(sol-gel C3S),其具有較短的硬化時間與良好的材料強度和生物相容性,並具備表面生物活性,但在封閉性質方面仍需進一步研究。此外,也利用共沉法(coprecipitation method)並添加氟離子穩定產物結構的方式,製備出高純度且硬化時間短的共沉法製備之三鈣矽酸鹽(C3S),依其燒結溫度的不同,分別命名為F1400及F1250,但尚未測試在牙科其它應用的性質。故本研究的目的是要測試共沉法製備之三鈣矽酸鹽F1400與F1250的物理化學性質、水合行為、表面生物活性、生物相容性及封閉性質,以評估其在牙髓病修補治療應用的潛力。
實驗結果發現,F1400和F1250均具有良好生物相容性,細胞在F1400和F1250都有良好的貼附,細胞存活率和控制組相比相當,兩者均不具有細胞毒性。在重金屬含量方面,F1400和F1250兩者幾乎不含有重金屬。同時在水合行為表現相類似。F1400與F1250在SBF中進行水合反應時,隨著反應時間28天後,兩者在電子顯微鏡觀察下,均可以發現在材料表面有球狀結構結晶出現;同時在X光繞射分析可發現,2θ=29.4°∼31.8°範圍出現的波峰與強度有所變化,推測可能和鈣磷酸鹽類結晶形成有關;另外還可以觀察到SBF溶液中磷離子濃度隨著時間增加有急遽下降的變化,推測磷離子有可能參與F1400和F1250表面球狀結晶的生成。綜合上述的實驗結果,推測表面球狀結晶為類氫氧基磷灰石的結構,顯示F1400和F1250都具有表面生物活性的特質。
在pH值部分,水合後放入水中,F1400和F1250皆在數分鐘內就會急遽升高到pH11-12之間,之後直到28天的pH值均無明顯變化。而在SBF的組別則是呈現不同的行為,F1400和F1250均會隨反應時間增加緩慢上升至pH10左右,推測可能是SBF為緩衝液有關。在鈣離子釋放量方面,F1400和F1250在水中與SBF進行水合反應相比較,鈣離子釋放量均隨著時間增加而增加,但在SBF中釋放量是在水中約2倍。而在矽離子釋放方面,除了F1400在SBF反應1天後有微量的矽離子釋放外,F1400和F1250無論是在水中和SBF中進行水合反應,在其他反應時間均未檢測出矽離子。在封閉性質實驗方面,F1400的染劑浸潤深度略大於MTA與sol-gel C3S,但三組間無統計上之顯著差異。
不過F1400和F1250在其他一些物理化學性質表現有明顯差異,和F1250相比較,F1400硬化時間較短、表面微硬度較強及抗壓強度表現較好,顯示F1400有較佳的物理機械性質。在水中進行水合過程中氟離子釋放方面,F1250釋放量約為2.4 ppm,是F1400兩倍。考慮共沉法製備出F1400和F1250含有氟的量為製備過程中原添加物0.4817 g氟化鈉的0.05 wt%,推測材料中所添加的氟離子並未進入C3S晶體系統內,因而於反應時會釋放出來。
總結來說,和市售商品MTA相比較,F1400幾乎不含有重金屬,有明顯較短的硬化時間,較高的表面微硬度,同時在抗壓強度、生物表面活性、生物相容性及封閉性均沒有顯著差異,推測知F1400在牙髓病修補與治療上,為一極具潛力之材料。
zh_TW
dc.description.abstractMineral trioxide aggregate(MTA)is the most common used material for the endodontic retrograde filling and perforation repair due to its promising results. But its long setting time may cause some problems. Thus, our research team developed new tricalcium silicate cements via sol-gel process (sol-gel C3S), which have porous structure, shorter setting time, good biological compatibility, and bioactivity. However, their sealing ability remains unknown. Besides, our research team also developed tricalcium silicate with highly purity via coprecipitation method, named F1400 and F1250. However, the properties using in endodontics were unstudied. Thus, the aim of this study is to evaluate the physical and chemical properties, hydration behavior, surface bioactivity, biocompatibility, and sealing ability of coprecipitation tricalcium silicate.
The results showed that F1400 and F1250 presented no cytotoxicity and good adhesion to MRPC-1 cells. In addition, both of F1400 and F1250 were similar in the hydration behaviors to form calcium silicate hydrate (CSH) and calcium hydroxide, but they demonstrated significant differences in some chemical-physical properties. Compared to F1250, F1400 demonstrated better physical and mechanical properties by performing shorter setting time, stronger microhardness and higher compressive strength. In the hydration, the fluoride ions released from F1250 were about 2.4 ppm, which were twice than those from F1400. Consider only 0.05wt% fluoride ions were remained in F1250 and F1400 after sintering, the fluoride ions did not integrate into the tricalcium silicate and release from materials when resolving in water. Different to the microstructure observed in the group hydrated in water, a layer of granular crystals with the structure similar to apatite, was found on the hydrated products of F1400 and F1250 in SBF (simulated body fluid) group via SEM. In addition, the peaks over 2θ=29⁰∼34⁰ were shifting and became broad when the time increased to 28 days in the SBF group, which may relate to the formation of calcium phosphate rich products. Furthermore, the phosphate ions in SBF became undetectable within 1 day after reaction, which indicates the phosphate ions may react with F1400 and F1250 to form the calcium phosphate rich layer on their surface. According to the results, we hypothesize F1400 and F1250 are bioactive materials by presenting the ability to form apatite-like layer on their surface when hydrated in SBF.
When hydrated in water, the pH values of F1400 and F1250 increased immediately to pH11-12 within minutes and then remained plateau. In contrast, the pH values of both materials in SBF group increased gradually and reached to pH10 with time increased to 28 days. The trend of calcium ions released from F1400 and F1250 over time was similar in SBF and water groups, but the SBF groups released calcium ions twice than the water groups. Besides, both materials hydrated in water and in SBF showed no release of silicon ions except F1400 hydrated in SBF within the first day. In sealing ability test, there was no statistical difference in immersing lengths between F1400, SN200, and GMTA. In conclusions, F1400 demonstrated good biocompatibility and bioactive property, and have shorter setting time and the comparable physical properties of GMTA. F1400 is considered as a potential material in endodontic applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:15:44Z (GMT). No. of bitstreams: 1
ntu-102-R99422020-1.pdf: 50540827 bytes, checksum: 3d2e8c4daa6a6cce43e051099b6efd7c (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖次 x
表次 xii
縮寫表 xiii
第一章 前言 1
第二章 文獻回顧 3
2.1 牙髓病修補治療 3
2.1.1 根尖手術與根尖逆充填 3
2.1.2 根管穿孔修補 3
2.1.3 活髓治療(Vital pulp therapy) 3
2.1.4 理想的牙髓病修補材料 4
2.1.5 現有的牙髓病修補材料 4
2.2 三氧礦化聚合物(MTA) 5
2.2.1 MTA簡介 5
2.2.2 MTA之缺點與面臨之問題 6
2.2.3 MTA性質的改良 7
2.3 高溫鍛燒法(Melt-quenched method) 7
2.4 溶膠-凝膠法(Sol-gel Method) 8
2.4.1 溶膠-凝膠法簡介 8
2.4.2 本研究團隊以溶膠-凝膠法研發之三鈣矽酸鹽 8
2.5 共沉法(Co-precipitation method) 10
2.5.1 共沉法簡介 10
2.5.2 含添加物之三鈣矽酸鹽 10
2.5.3 含氟添加物之三鈣矽酸鹽 11
2.6 鈣矽生醫材料表面生物活性與生物相容性之研究 12
2.6.1 鈣矽生醫材料表面生物活性之評估 12
2.6.2 鈣矽生醫材料的生物相容性評估 14
2.7 鈣矽生醫材料封閉性質研究 15
2.7.1 封閉性質測試 15
第三章 動機與目的 17
第四章 材料與方法 19
4.1 儀器裝置 19
4.2 實驗材料 20
4.3 材料製備 22
4.3.1 共沉法之三鈣矽酸鹽(F1250、F1400)製備 22
4.3.2 溶膠-凝膠法之三鈣矽酸鹽(SO400及SN200)製備 22
4.4 共沉法三鈣矽酸鹽之物理與臨床性質研究 23
4.4.1 硬化時間測試(setting time) 23
4.4.2 抗壓強度測試(compressive strength) 24
4.4.3 微硬度測試(microhardness test) 24
4.4.4 牙科用水基水泥重金屬測試(heavy metal content test) 25
4.5 共沉法三鈣矽酸鹽於二次水與模擬體液中之水合行為與表面生物活性之研究 26
4.5.1 模擬體液(SBF)之製備 26
4.5.2 樣本製備 26
4.5.3 掃描式電子顯微鏡(SEM) 26
4.5.4 X光繞射(XRD)分析 26
4.5.5 酸鹼值分析 27
4.5.6 感應耦合電漿質譜分析儀(ICP-MS)分析 27
4.5.7 離子層析儀(IC)分析 27
4.6 共沉法鈣矽酸鹽生物相容性之研究 27
4.6.1 MRPC-1細胞培養 28
4.6.2 細胞貼附行為 28
4.6.2.1 材料樣本製備與消毒 28
4.6.2.2 MRPC-1 貼附行為測試模型 28
4.6.2.3 細胞貼附行為觀察 29
4.6.3 材料細胞毒性測試 29
4.6.3.1 測試樣本之製備與消毒 29
4.6.3.2 MRPC-1 細胞之製備與細胞形態分析 29
4.6.3.3 細胞存活率分析 29
4.7 共沉法三鈣矽酸鹽與牙本質間之交介面接觸性質之研究 30
4.7.1 測試樣本製備 30
4.7.2 封閉性測試 (sealing ability test) 31
第五章 結果 32
5.1 共沉法製備之三鈣矽酸鹽物理與化學性質分析結果 32
5.1.1 硬化時間測試 32
5.1.2 抗壓強度測試 32
5.1.3 微硬度測試 32
5.1.4 重金屬含量測試 32
5.2 共沉法製備之三鈣矽酸鹽水合行為與表面生物活性行為分析 33
5.2.1 水合產物表面結構觀察 33
5.2.2 水合產物之晶相分析 33
5.2.3 水合產物之酸鹼值變化 34
5.2.4 水合產物之離子濃度變化 34
5.3 共沉法製備之三鈣矽酸鹽水合行為與表面生物活性行為分析 35
5.3.1 細胞貼附行為分析 35
5.3.2 材料細胞毒性測試分析 36
5.4 共沉法製備之三鈣矽酸鹽封閉性質測試 36
5.4.1 封閉性質測試分析 36
第六章 討論 37
6.1 共沉法製備三鈣矽酸鹽之機械性質 37
6.1.1 硬化時間之探討 37
6.1.2 抗壓強度之探討 37
6.1.3 微硬度之探討 38
6.1.4 重金屬含量檢測之探討 38
6.2 共沉法製備之三鈣矽酸鹽之水合行為與表面活性之探討 38
6.2.1 水合產物顯微結構觀察 38
6.2.2 水合產物之晶相探討 39
6.2.3 水合產物之酸鹼值變化探討 40
6.2.4 水合產物之離子濃度變化探討 40
6.3 共沉法製備之三鈣矽酸鹽生物相容性之探討 42
6.3.1 細胞貼附行為探討 42
6.3.1.1 細胞對MTA貼附行為探討 42
6.3.1.2 MRPC-1 細胞對共沉法製備之三鈣矽酸鹽之貼附行為 43
6.3.2 材料對細胞毒性探討 43
6.4 共沉法製備之三鈣矽酸鹽封閉性質之探討 43
第七章 結論 46
參考文獻 47
附錄 59
dc.language.isozh-TW
dc.subject硬化時間zh_TW
dc.subject共沉法製備之三鈣矽酸鹽zh_TW
dc.subject表面生物活性zh_TW
dc.subject封閉性測試zh_TW
dc.subject生物相容性zh_TW
dc.subjectcoprecipitation tricalcium silicateen
dc.subjectsetting timeen
dc.subjectsurface bioactivityen
dc.subjectbiocompatibilityen
dc.subjectsealing abilityen
dc.title共沉法製備之三鈣矽酸鹽於牙髓病治療應用性質之探討zh_TW
dc.titleEvaluation of Tricalcium Silicates Synthasized via Co-precipitation Method in Endodontic Applicationsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊彬,林弘萍,陳振中
dc.subject.keyword共沉法製備之三鈣矽酸鹽,硬化時間,表面生物活性,生物相容性,封閉性測試,zh_TW
dc.subject.keywordcoprecipitation tricalcium silicate,setting time,surface bioactivity,biocompatibility,sealing ability,en
dc.relation.page84
dc.rights.note有償授權
dc.date.accepted2013-08-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
49.36 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved