請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60331完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊平世(Ping-Shin Yang) | |
| dc.contributor.author | Ting-Yan Liu | en |
| dc.contributor.author | 劉廷彥 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:15:42Z | - |
| dc.date.available | 2018-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | 王亞男、蕭文偉、林瑞進、沈介文、李金玲、黃淑玲 2004 長喙殼菌對六種針葉樹樹苗及杉木致病性之研究 台大實驗林研究報告 18(1):9-12。
田佩玲 2006 溪頭地區北勢溪水棲昆蟲群聚結構及功能組成 國立台灣大學昆蟲學研究所碩士論文。 朱耀沂、趙榮台 1995 進口木材之小蠹蟲及長小蠹蟲 台灣省林業試驗所,台北市 97 頁。 林宗俊、黃振文、謝文瑞 2003 台灣廣葉杉萎凋病相關長喙殼菌之鑑定 植病會刊 12:33-42。 林清山 2006台大實驗林杉木林中小蠹蟲種類及族群變化 國立台灣大學昆蟲學研究所碩士論文。 陳啟予、李奇峰 2011 小蠹蟲及其共生真菌與植物病害之關係 農作物害蟲及其媒介病害整合防治技術研討會專刊 165-174。 陸聲山 2010 亞洲小蠹蟲美國大麻煩—樟科植物萎凋病 林業研究專訊 17(2):39。 蘇鴻傑1992台灣之植群:山地植群帶與地理氣候區 中央研究院植物研究所專刊 11: 39-53。 臺大實驗林管理處管理組。2010。臺大實驗林既有已混農使用事實之契約林地混農林業使用可行性評估研究計畫補充資料-契約林地管理業務簡介。 Al Adawi AO, Al Jabri RM, Deadman ML, Barnes I, Wingfield B, Wingfield MJ. 2013. The mango sudden decline pathogen, Ceratocystis manginecans, is vectored by Hypocryphalus mangiferae (Coleoptera: Scolytinae) in Oman. European Journal of Plant Pathology. 135(2): 243-251. Barclay MVL; Telnov D. 2005. Proceedings of the 3rd symposium and workshop on the conservation of saproxylic beetles Latvijas entomologs, Supplementum 6 Entomological society of Latvia: Riga. 126 pp. Beaver RA. 1979. Host specificity of temperate and tropical animals. Nature. 281: 139-141. Beaver RA, Liu LY. 2010. An annotated synopsis of Taiwanese bark and ambrosia beetles, with new synonymy, new combinations and new records (Coleoptera: Curculionidae: Scolytinae). Zootaxa. 2602: 1–47. Beketova MA, Keffordb BJ, Schaferc RB, an Liessa M. 2013. Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences. 110: 11039–11043. Buse J, Levanony T, Timm A, Dayan T, Assmann T. 2010. Saproxylic beetle assemblages in the Mediterranean region: Impact of forest management on richness and structure. Forest Ecology and Management. 259: 1376-1384. Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics. 11: 265-270. Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1310. Colwell RK. 2013. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.0.0. Users Guide and application published at : http://viceroy.eeb.uconn.edu/estimates. Djupstrom LB, Weslien J, Schroeder LM. 2008. Dead wood and saproxylic beetles in set-aside and not set-aside forest in a boreal region. Forest Ecology and Management. 255: 3340-3350. Duelli P, Obrist MK. 1998. In search of the best correlates for local organismal biodiversity in cultivated areas. Biodivers Conserv. 7: 297-309. Esseen PA, Ehnstrom B, Ericson L, Sjoberg K. 1997. Boreal forests. Ecological Bulletins. 46: 16–47. Ferro ML, Carlton CE. 2011. A practical emergence chamber for collecting coleoptera from rotting wood, with a review of emergence chamber designs to collect saproxylic insects. Coleopterists Bulletin. 65(2): 115–124. Hammond PM, Kitching RL, Stork NE. 1996. The composition and richness of the tree-crown Coleoptera assemblage in an Australian subtropical forest. Ecotropica 2: 99-108. Holland J.D.. 2007. Sensitivity of Cerambycid biodiversity indicators to definition of high diversity. Biodivers Conserv. 16: 2599-2609. Hsu CB., Yang PS. 2005. Examining the relationship between aquatic insect assemblages and water variables by ordination techniques. Formosan Entomologist 25: 67-89. Hulcr J. 2013. Ambrosia Symbiosis. [Online]. Available: http://www.ambrosiasym- -biosis.org. Jonsell M., Weslien J., 2003. Felled or standing retain wood – it makes a difference for saproxylic beetles. Forest Ecology and Management. 175: 425-435. Jonsell M., Nitterus K., Stighall K. 2004. Saproxylic beetles in natural and man-made deciduous high stumps retained for conservation. Biological Conservation 118: 163-173. Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforest Syst. 76: 1-10. Koler F. 2000. Totholzkafer in Naturwaldzellen des nordlichen Rheinlandes. Vergleichende Studien zur Totholzkferfauna Deutschlands und deutschen Naturwaldforschung. Recklinghausen: Landesamt fur Agrarordnung NRW 351 pp. Martikainen P, Siitonenb J, Punttilac P, Kailad L, Rauhb J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological Conservation. 94: 199-209. Magurran AE. 1988. Ecological Diversity and Its Measurement. New Jersey: Princeton University Press. 179pp. Masood A, Saeed S. 2012. Bark beetle, Hypocryphalus mangiferae stebbing (coleoptera: Curculionidae: scolytinae) is a vector of mango sudden death disease in Pakistan. Pakistan Journal of Botany. 44(2): 813-820. Nair PKR. 1985. Classification of agroforestry system. Agrofor Syst. 3: 97-128. Norvez O, Hebert C, Belanger L. 2013. Impact of salvage logging on stand structure and beetle diversity in boreal balsam fir forest, 20 years after a spruce budworm outbreak. Forest Ecology and Management. 302: 122-132. Parker SP. 1982. Synopsis and classification of living organisms. McGraw-Hill. New York. Ohsawa M. 2005. Species richness and composition of Curculionidae (Coleoptera) in a conifer plantation, secondary forest, and old-growth forest in the central mountainous region of Japan. Ecol Res. 20: 632-645. Ohsawa M. 2008. Different effect of coarse woody material on the species diversity of three saproxylic beetle families (Cerambycidae, Melandryidae, and Cucurlionidae). Ecol Res. 23: 11-20. Ohsawa M. 2010. Beetle families as indicators of Coleopteran diversity in forest: a study using Malaise traps in the central mountainous region of Japan. J Insect Conserv. 14: 479-484. Okland B, Bakke A, Hagvar S, Kvamme T. 1996. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiversity and Conservation. 5: 75-100. Ranius T. 2002. Osmoderma eremite as an indicator of species richness of beetles in tree hollows. Biodiver Conserv. 11: 931-941. Rao MR, Singh MP, and Day R. 2000. Insect pest problems in tropical agroforestry systems: Contributory factors and opportunities for management. Agrofor Syst (in press). Schiegg K. 2000. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography. 23: 579–587. Schroth G and Zech W. 1995. Root length dynamics in agroforestry with Gliricidia sepium as compared to sole cropping in the semi-decidous rainforest zone of West Africa. Plant Soil. 170: 297–306. Schroth G, Krauss U, Gasparotto L, Aguilar JAD and Vohland K. 2000. Pest and disease in agroforestry systems of the humid tropics. Agrofor Syst. 50: 199-241. Simila M, Kouki J, Martikainen P. 2003. Saproxylic beetles in managed and seminatural Scot pine forest: quality of dead wood matters. Forest Ecology and Management. 174: 365-381. Singh Rathore MP. 1995. Insect pests in agroforestry. Working Paper No. 70. Nairobi, International Centre for Research in Agroforestry, 73 pp. Sippola AL, Lehesvirta T and Renvall P. 2001. Effects of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. Ecological Bulletins. 49: 243-254. Steffan-Dewenter I, Kessler M, Barkmann J, Bos MM, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein SR, Guhardja E, Harteveld M, Hertel D, Hohn P, Kappas M, Kohler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogea J, Pitopang R, Schaefer M, Schwarze, Sporn SG, Steingrebe A, Tjitrosoedirdjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, and Tscharntke T. 2007. Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences. 104: 4973-4978. Sverdrup-Thygeson A, Ims RA. 2002. The effect of forest clearcutting in Norway on the community of saproxylic beetles on aspen. Biological Conservation. 106: 347-357. ter Braak CJF. 1995. Non-linear methods for multivariate statistical calibration and their use in palaeoecology: a comparison of inverse (k-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems. 28: 165-180. ter Braak CJF, and Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, New York, USA. Webb A, Buddle CM, Drapeau P, Saint-Germain M. 2008. Use of remnant boreal forest habitats by saproxylic beetle assemblages in even-aged managed landscapes. Biological Conservation. 141: 815-826. Wood SL. 1982. The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph. Great Basin Naturalist Memoirs. 6: 1-1359. Wu J, Pan H, Yang S, Niu X. 2013. Tree species and elevation influence the assemblage composition of saproxylic beetles in subtropical forest of east China. Forest Ecology and Management. 292: 29-38. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60331 | - |
| dc.description.abstract | 混農林業(agroforestry)在許多開發中國家被視為在農業發展與維持生物多樣性資源的衝突中,一個可行的解決方案,但在臺灣,是否該在原本適宜造林的崎嶇山地引入混農林業則少有提及。本研究於臺大實驗林三個不同海拔設置樣區,比較混農操作和造林地環境下朽木類甲蟲多樣性與群聚結構,並透過排序技術探討環境因子其影響朽木類甲蟲群聚的能力。自2011年九月到2012年九月,從六個樣區十八座新型羽化陷阱中採得4967隻鞘翅目昆蟲,隸屬於63科554種。其中以隱翅蟲科(Staphylinidae)種類數最多,共共192個分類群;小蠹蟲亞科(Scolytinae)數量最多,共1849隻。比較兩樣區之稀有度曲線 (rarefication curve),兩者預測物種豐度之SChao1值以混農樣區較高,但皆落在彼此S Chao1之百分之九十五信賴區間內,無顯著差異。除了中海拔樣區外,其餘兩組樣區朽木類甲蟲的Shannon多樣性指數以造林樣區較高,但不顯著,均勻度 (Shannon’s evenness) 也以造林樣區較高。環境因子中以海拔高度 (elevation)最具有決定地位;數量型環境因子以遮蔽度 (canopy)最為關鍵,遮蔽度在樣區間和操作間具有顯著差異,並與朽木材積 (timber volum)、材表面積 (timber surface area) 和樹冠高度顯著相關,並與均勻度顯著相關,和採得個體數負相關。群聚分析 (cluster analysis) 的結果顯示朽木類甲蟲相與利用方式較無關聯,相似情形近似樣區間的地理距離。典型對應數分析 (canonical correspondence analysis, CCA)結果顯示海拔高度、遮蔽度、朽木材積和材表面積和最能解釋物種分佈之第一典範軸顯著相關;第二典範軸則與坡度和樹冠高度顯著相關。混農林業引入造林地其蟲害風險與交互感染風險較平地為高,經營維持收益所需之蟲害防治操作與生物多樣性的維持難以並行。 | zh_TW |
| dc.description.abstract | Agroforestry have been seen as a feasible solution of the conflict about crop production and biodiversity conservation in developing countries. But it still has doubts about introducing agroforestry into the rugged mountain of Taiwan, where used to be forest plantation. The study set up 3 group of sample sites, depend on different altitude, in the NTU Experiment Forest, to compare the diversity and the community structure of saproxylic beetles under the environment of agroforestry and forest plantation. And discussed the ability of environment factor influence the saproxylic beetles, through the orientation technique. From September 2011 to September 2012, 4697 individuals of coleopteran insect, belong to 554+species and 63 families, were collected from six sample sites, including 18 new type emergence traps. Family Staphylinidae had the most abundant number of species, with 192 taxons;Subfamily Scolytinae had 1849 individuals, were the most abundant group. Comparing the rarefication curve of two kind of usage, Agroforestry sites had higher SChao1 value, but their 95% Confidence interval of SChao1 had large ranges overlap, no significant differences in richness. Every site other than low-medium altitude, Shannon’s diversity indexes were higher in the forest plantation ones, but not significant. Evenness were higher in forest plantation sites. Elevation was the most decisive factor to the distribution of species in all environment variables; canopy as the key variable, had significant differences among sites and usages, correlated with timber volume, timber surface area, and canopy height, and also correlated with evenness, negative correlated with number of individuals. The results of cluster analysis shown the species composition were well depend on the geographical distance, rather than the way of usage. Altitude, canopy, slope, and timber volume on axis 1 and tree height, utilize, and slope on axis 2 were the environment variables that best explained about 34.6% of the variance in saproxylic beetle assemblage on the first two axes. Introducing agroforestry into forest plantation may have higher risk of pest cross infection, lead to higher cost of pest management to maintain profit, efficient ways of pest management were contrary to the goal of maintaining biodiversity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:15:42Z (GMT). No. of bitstreams: 1 ntu-102-R99632007-1.pdf: 5212083 bytes, checksum: 5fae357cb3e58413fd7675b4991f2f54 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝.....................................1
中文摘要.................................3 ABSTRACT................................4 目錄 ................................5 壹、 緒言 ........................7 貳、 往昔研究 ........................8 一、 朽木類甲蟲及其多樣性 ........8 二、 混農林業蟲害管理 ................9 三、 小蠹蟲 .......................10 四、 羽化陷阱 .......................11 參、 研究材料與方法 ...............13 一、 試驗樣區 .......................13 (一)、 臺大實驗林 ...............13 (二)、 樣區位置與環境描述 ...............13 二、 取樣方法 .......................14 (一)、 集材 .......................14 (二)、 羽化陷阱(emergence trap) .......14 (三)、 環境變數測量方法 ...............15 三、 資料分析 .......................15 (一)、 物種豐度(richness) .......15 (二)、 多樣性(diversity) ...............16 (三)、 均勻度(evenness) ...............17 (四)、 優勢種比例 ......................17 (五)、 統計分析 .......................17 肆、 結果 .......................19 一、 生物群聚參數與環境因子 .......19 (一)、 Site 1A低海拔混農樣區 .......19 (二)、 Site 1B 低海拔對照樣區 .......20 (三)、 Site 2A 中低海拔混農樣區 .......20 (四)、 Site 2B 中低海拔對照樣區 .......21 (五)、 Site 3A 中海拔混農樣區 .......22 (六)、 Site 3B 中海拔對照樣區 .......22 二、 物種豐度預測 ...............23 三、 多樣性差異 ...............23 四、 單變質分析 ...............23 五、 多變質分析 ...............24 伍、 討論 ...............27 參考文獻 ...............30 附表 ...............35 附圖 ...............47 附錄 ...............48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 典型對應數分析 | zh_TW |
| dc.subject | 混農林業 | zh_TW |
| dc.subject | 朽木類鞘翅目 | zh_TW |
| dc.subject | 生物多樣性 | zh_TW |
| dc.subject | Biodiversity | en |
| dc.subject | Agroforestry | en |
| dc.subject | Saproxylic Coleoptera | en |
| dc.subject | Canonical correspondence analysis | en |
| dc.title | 台大實驗林混農林業朽木類甲蟲群聚與環境因子之影響 | zh_TW |
| dc.title | Saproxylic Beetle Community and Influences of Environment Variables in Agroforestry systems in the NTU Experimental Forest | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王亞男(Ya-Nan Wang),李奇峰(Chi-Feng Lee),鄭明倫(Ming-Luen Jeng) | |
| dc.subject.keyword | 混農林業,朽木類鞘翅目,生物多樣性,典型對應數分析, | zh_TW |
| dc.subject.keyword | Agroforestry,Saproxylic Coleoptera,Biodiversity,Canonical correspondence analysis, | en |
| dc.relation.page | 80 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
