Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6032
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏宇(Hongey Chen)
dc.contributor.authorChen-Han Linen
dc.contributor.author林辰翰zh_TW
dc.date.accessioned2021-05-16T16:19:41Z-
dc.date.available2019-01-09
dc.date.available2021-05-16T16:19:41Z-
dc.date.copyright2013-08-09
dc.date.issued2013
dc.date.submitted2013-08-08
dc.identifier.citation中文部分:
何春蓀 (1986) 台灣地質概論:台灣地質圖說明書,經濟部中央地質調查所,共164頁。
吳永助 (1976) 清水土場地熱區及其外圍之地質。礦業技術,第十四卷,第十二期,第484-489頁。
呂銘翔 (2007) 新武呂溪流域的山崩與輸砂量在地震與颱風事件中的相對應關係,國立台灣大學地質科學系碩士論文,共113頁。
李春生、張寶堂 (1984) 之本地熱區之地質,台灣區地熱資源探勘評估報告之二,能源礦業研究所報告第208號,第2-17頁。
林孟龍、林俊全 (2003) 颱風對於蘭陽溪上游集水區懸移質生產特性的影響,地理學報,第33期,第39-53頁。
林冠瑋 (2005) 陳有蘭溪流域的山崩作用在颱風及地震事件中與河道輸砂量之相對關係,國立台灣大學地質科學系碩士論文,共130頁。
林冠瑋 (2010) 台灣地區之河流輸砂量與岩性、逕流量及地震相關性,國立台灣大學地質科學系博士論文,共234頁。
林朝宗、林慶偉、李森淵 (2006) 颱風豪雨期間石門水庫庫水濁度遽升之懸浮顆粒來源探討,工程環境會刊,第17 期,第23-28頁。
施尊穎 (2009) 台東鹿野溪流域之地層滑動與河川化性在卑南地震後之相關性,國立台灣大學地質科學系碩士論文,共108頁。
恩斯特、劉忠光、黛摩亞 (1981) 蘇澳南澳地區太魯閣帶角閃岩及伴隨岩石多次變質之研究。中國地質學會專刊,第四號,第391-441頁。
袁承偉 (2007) 石門水庫集水區的山崩與輸砂量在不同颱風事件中之相對應關係,國立台灣大學地質科學系碩士論文,共121頁。
張睿明 (2012) 旗山溪及蘭陽溪集水區流域之降雨量、山崩及輸砂量之關係,國立台灣大學地質科學系碩士論文,共103頁。
莊善傑 (2005) 大甲溪流域的山崩在颱風與地震事件中與地質環境之對應關係,國立台灣大學地質科學系碩士論文,共124頁。
許家銘 (2008) 濁口溪流域的地表作用與地質環境間的相關性,國立台灣大學地質科學系碩士論文,共106頁。
許家銘 (2008) 濁口溪流域的地表作用與地質環境間的相關性,國立台灣大學地質科學系碩士論文,共106頁。
連凱莉 (2009) 台灣小河川溶解性物質之區域性與季節性變化,國立台灣大學海洋研究所碩士論文,共92頁。
陳宏宇、林曉武 (2005-2008) 溪水取樣及其化學性質之分析工作,行政院農委會林務局。
陳培源 (2008) 台灣地質,台灣省應用地質技師公會。
陳肇夏 (1998) 台灣的變質岩,經濟部中央地質調查所,共356頁。
黃正良、廖學誠、金恆鑣、陳明杰、李福明 (2007) 2011年桃芝颱風蓮華池人工林及天然集水區溪流水化學之比較,台大實驗林研究報告,第21期,第53-63頁。
黃朝恩 (1982) 台灣河川輸砂特性及其地形意義,師大學報,第27期,第649-680頁。
經濟部中央地質調查所 (2000) 台灣二十五萬分之一地質圖,經濟部中央地質調查所。
經濟部水利署 (1983-2012) 台灣水文年報總冊,行政院經濟部水利署。
鄒年喬 (2010) 石門水庫集水區之降雨特性對崩塌及輸砂量的關係,國立台灣大學地質科學系碩士論文,共114頁。
賴怡萱 (2013) 台灣小河川溶解性物質之季節性變化與極端事件影響,國立台灣大學海洋研究所碩士論文,共63頁。
謝兆申、王明果 (1991) 臺灣地區主要土類圖輯,國立中興大學土壤調查試驗中心,第1991-343頁。
羅士福 (2006) 溪頭試驗林2005年泰利颱風期間雨水與溪水化學變化研究,國立台灣大學森林環境暨資源學研究所碩士論文,共32頁。
英文部分:
Aber, J. D., Melillo, J. M. (1991) Terrestrial Ecosystem. Saunders, Philadelphia.
Aleotti, P. (2004) A warning system for rainfall-induced shallow failures. Engineering Geology, 73, 247-265.
Amiotte-Suche, P., Aubert, D., and Probst, J. L. (1999) δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France). Chemical Geology, 159, 129-145.
Atekwana, E. A., Krishnamurthy, R. V. (1998) Seasonal variations of dissolved inorganic carbon and δ13C of surface waters: application of a modified gas evolution technique. Journal of Hydrology, 205, 265-278.
Barth, J. A. C., Cronin, A. A., and Dunlop, C. J. (2003) Influence of carbonates on the riverine carbon cycle in an anthropogenically dominated catchment basin: evidence from major elements and stable carbon isotopes in the Lagan River (N. Ireland). Chemical Geology, 200, 203-216.
Barton, N. R. (1976) The shear strength of rock and rock joints. International Journal of Rock Mechanics and Mining Sciences, 13, 1-24.
Berner, E., Berner, R. A., (1996) Global environment: water, air, and geochemical cycles.
Black, K. (2011) Applied Business Statistics: Making better business Decisions, 6th edition, Wiley Company.
Buhl, D., Neuser, R. D., and Richter, D. K. (1991) Nature and nurture: environmental isotope story of the river Rhine. Naturewissenschaften, 78, 337-346.
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R., and Duncan, C. (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature, 379, 505-510.
Caine, N. (1980) The rainfall intensity duration control of shallow landslides and debris flows. Geografiska Annaler: Series A, Physical Geography, 62, 23-27.
Cannon, S., Gartner, J., Wilson, R., Bowers, J., and Laber, J. (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology, 96, 250-269.
Chakrapani, G., Saini, R. (2009) Temporal and spatial variation in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. Journal of Asian Earth Science, 35, 545-553.
Chang, K. T., Chiang, S. H., and Lei, F. (2008) Analysing the Relationship Between Typhoon-Triggered Landslides and Critical Rainfall Conditions. Earth Surface Processes and Landforms, 33, 1261-1271.
Chang, S. C. (2009) Increase in basin sediment yield from landslides in storms following major seismic disturbance. Engineering Geology, 103, 59-65.
Chen, H., Lin, G. W. , Lu, M. H., Shih, T. Y., Horng, M. J., Wu, S. J., and Chuang, B. (2011) Effects of topography, lithology, rainfall and earthquake on landslide and sediment discharge in mountain catchments of southeastern Taiwan. Geomorphology, 133, 132-142.
Chen, H., Su, D. I. (2001) Geological factors for hazardos debris flow in Hoster, Central Taiwan. Environment Geology, 40, 1114-1124.
Chen, J., Wang, F., and Xia, X. (2002) Major element chemistry of Changjiang (Yangtze River). Chemical Geology, 181, 231-255.
Claeke, B. A., Burbank, D. W. (2010) Bedrock fracturing, threshold hillsopes, and limits to the magnitude of bedrock landslides. Earth and Planetary Science Letters, 297, 577-586.
Cohn, T. A. (1995) Recent advances in statistical methods for the estimation of sediment and nutrient transport in rivers, Reviews of Geophysics Supplement, 117-1123.
Cole, J. J., Caraco, N. F. (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Marine and Freshwater Research, 52, 101-110.
Crozier, M. J. (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surface Processes and Landforms, 24, 825-833.
Crozier, M. J., Eyles, R. J. (1980) Assessing the probability of rapid mass movement. In: Technical Groups (Eds.). Proceedings of the 3rd Australia-New Zealand Conference on Geomechanics, Wellington, 6, 2.47-2.51.
Dadson, S. J. (2004) Erosion of an active mountain belt. Ph.D. Thesis, Department of Earth Science, University of Cambridge.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M. L., Willett, S. D., Hu, J. C., Horng, M. J., Chen, M. C., Stark, C. P., Lague, D., and Lin, J. C. (2003) Links between erosion, runoff variability, and seismicity in the Taiwan orogen. Nature, 426, 648-651.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J. C., Hsu, M. L., Lin, C. W., Horng, M. J., Chen, C. T., Milliman, J., and Stark, C. P. (2004) Earthquake-triggered increase in sediment delivery from an active mountain Belt. Geology, 32, 733-736.
Dadson, S. J., Hovius, N., Pegg, S., Dade, W. B., Horng, M. J., and Chen, H. (2005) Hyperpycnal river flows from an active mountain belt. Journal of Geophysical Research, 110, 1-38.
Dahal, R., Hasegawa, S. (2008) Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100, 429-443.
Dalai, T.K., Krishnaswami, S., and Sarin, M.M. (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochimica et Cosmochimica Acta, 66, 3397-3416.
Dhakal, A. S., Sidle, R. C. (2004) Distributed simulations of landslides for different rainfall conditions. Hydrological Processes, 18, 757-776.
Duan, N. (1983) Smearing estimate: A non-parametric retransformation method. Journal of the American Stastical Association, 78, 605-610.
Feller, M. C., Kimmins, J. P. (1979) Chemical characteristics of a small stream near Haney in southwestern British Columbia. Water Resources Research, 15, 247-258.
Flintrop, C., Hohlmann, B., and Jasper, T. (1996) Anatomy of pollution: rivers of North Rhine- Westphalia Germany. American Journal of Science, 296, 58-98.
Fuller, C. W., Willett, S. D., Hovius, N., and Slingerland, R. (2003) Erosion rates for Taiwan mountain basins: new determinations from suspended records and a stochastic model of their temporal variation. The journal of Geology, 11, 71-87.
Gaillardet, J., Dupre, B., Louvat, P. (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 159, 3-30.
Galewsky, J., Stark, C. P., Dadson, S., Wu, C. C., Sobel, A. H., and Horng, M. J. (2006) Tropicalcyclone triggering of sediment discharge in Taiwan. Journal of Geophysical Research, 111, 1-16.
Galy, A., France-Lanord, C. (1999) Weathering processes in the Ganges-Brahmaputra basin and the riverine alkalinity budget. Chemical Geology, 159, 31-60.
Gamble, J. C. (1971) Durability-plasticity classification of shales and other argillaceous rocks. Ph.D. Thesis. University of Illinois, Urban.
Gibbs, R. J. (1970) Mechanisms controlling world water chemistry. Science, 170, 1088-1090.
Glade, T., Crozier, M. J., and Smith, P. (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model’’. Pure and Applied Geophysics, 157, 1059-1079.
Guglielmi, Y., Bertrand C., Compagnon F., Follacci J. P., and Mudry J. (2000) Acquisition of water chemistry in a mobile fissured basement massif: its role in the hydrogeological knowledge of the La Clapie`re landslide (Mercantour massif, southern Alps, France). Journal of Hydrology, 229, 138-148.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P. (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 98, 239-267.
Guzzettia, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C., Galli, M., and Salvati, P. (2004) Landslides triggered by the 23 November 2000 rainfall event in the Imperia Province, Western Liguria, Italy. Engineering Geology, 73, 229-245.
Helie, J. F., Hillaire-Marcel, C., and Rondeau, B. (2002) Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River-isotopic and chemical constraint. Chemical Geology, 186, 117-138.
Hovius, N., Stark, C. P., Chu, H. T., and Lin, J. C. (2000) Supply and Removal of Sediment in a Landslide-Dominated Mountain Belt: Central Range, Taiwan. The Journal of Geology, 108, 73-89.
Hovius, N., Stark. C. P., and Allen. P.A. (1977) Sediment flux from a mountain belt derived by landslide mapping. Geology, 25, 231-234.
ISRM (1981) Rock characterization testing and monitoring: ISRM suggested methods, Pergamon, 1-121.
Iverson, R. M. (2000) Landslide triggering by rain infiltration. Water Resources Research, 36, 1897-1910.
Johnson, N. M., Likens, G. E., Bormann, F. H., Fisher, D. W., and Pierce, R. S.(1969) A working model for the variation in stream water chemistry at the Hubbard Brook Experimental Forest, New Hampshire. Water Resources Research, 5, 1353-1363.
Kao, S. J., Chan, S. C., Kuo, C. H., and Liu, K. K. (2005) Transpot-dominated sediment loading in Taiwan rivers: a case study from the Mn-an stream. Geology, 113, 217-225.
Kao, S. J., Liu, K. K. (2001) Estimating the suspended sediment load by using the historical hydrometric record from the Lanyang-Hsi watershed. TAO, 12, 401-414.
Keefer, D. K. (2000) Statistical analysis of an earthquake-induced landslide distribution – the 1989 Loma Prieta, California event. Engineering Geology, 58, 231-249.
Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, III W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S. (1987) Real-time landslide warning during heavy rainfall. Science, 238, 921-925.
Kokot, S., King, G., Keller, H. R., and Massart, D. L. (1992) Application of chemometrics for the selection of microwave digestion procedures. Analytical Chimica Acta, 268, 81-94.
Li, S. L., Liu, C. Q., Li J., Lang Y. C., Ding H., and Li L. (2010) Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints. Chemical Geology, 277, 301-309.
Li, Y. H. (1975) Denudation of Taiwan island since the Pliocene eopch. Geology, 4, 105-107.
Liaw, S. C. (1998) Streamflow simulation using a physically based hydrologic model in humid forested watersheds. Dissertation, Colorado State University, USA. 163pp.
Lin, G. W., Chen, H., Chen, Y. H., and Horng, M. J. (2008) Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97, 32-41.
Lin, G. W., Chen, H., Chen, Y. H., and Horng, M. J. (2008) Influence of typhoons and earthquakes on rainfall-induced landslides and suspended sediments discharge. Engineering Geology, 97, 32-41.
Lin, G. W., Chen, H., Hovius, N., Horng, M. J., Dadson, S., Meunier, P., and Lines, M. (2008) Effects of earthquake and cyclone sequencing on landsliding and fluvial sediment transfer in a mountain catchmen. Earth Surface Processes and Landforms, 33, 1354-1373.
Lin, S., Hsieh, I. J., Huang, K. M., and Wang, C. H. (2002) Influence of the Yangtze River and grain size on the spatial variation of heavy metals and organic carbon in the East China Sea continental shelf sediment. Chemical Geology, 182, 377-394.
Ludwig, W., Probst, J. L., and Kempe, S. (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemistry Cycle, 10, 23-41.
Malina, J. F. Jr. (1996) Water Quality, In: Mays, L.W.(ed), Water Resources Handbook, McGraw-Hill Companies, USA, 8.3-8.49.
Mariotti, A. (1991) Le carbone 13 en abundance naturelle, traceur de la dynamique de la matiere organique des sols et des paleoenvironnements continentaux. Cahier. ORSTOM 4, Serie Pedologie, 26, 299-313.
Meunier, P., Hovius, N., and Haines, A. J. (2008) Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters , 275, 221-232.
Meybeck, M. (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads, American Journal of Science, 287, 401-428.
Mikos, M., Fazarinc, R., and Ribi, M. (2006) Sediment production and delivery from recent large landslide and earthquake-induced rock falls in the Upper Soca River Valley, Slovenia. Engineering Geology, 26, 198-210.
Milliman, J. D., Kao, S. J. (2005) Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon Herb (1996) on Taiwanese Rivers. Journal of Geology, 113, 503-516.
Montgomery, D. R., Dietrich, W. E. (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153-1171.
Mulder, T., Syvitski, J. P. M. (1995) Turbidity currents generated at river mouths during exceptional discharges to the world oceans. Geology, 103, 285-299.
Nedeltcheva, T. h., Piedallu, C., Gegout, J. C., Stussi, J. M., Boudot, J. P., Angeli, N., and Dambrine, E. (2006) Influence of granite mineralogy, rainfall, vegetation and relief on stream water chemistry (Vosges Mountains, north-eastern France). Chemical Geology, 231, 1-15.
Negrel, P., Allegre, C. J., Dupre, B., and Lewin, E. (1993) Erosion source determined by inversion of major and trace element ratios and strontium isotopic ratios in river water: the Congo Basin Case. Earth Planet Science Letter, 120, 59-76.
O’Dell, J. W., Praff, J. D., Gales, M. E., and McKee, G. D. (1984) The determination of inorganic anions in water by ion Chromatography. Method 300.0, US EPA 600/4.84.017, 5 pp.
Okimura, T., Ichikawa, R. (1985) A prediction method for surface failures by movements of infiltrated water in surface soil layer. Journal of Natural Disaster Science, 7, 41-51.
Pawellek, F., Veizer, J. (1994) Carbon cycle in the upper Danube and its tributaries: δ13CDIC constraints. Israel Journal of Earth Sciences, 43, 187-194.
Reinchardt, K. S. (2008) Effects of catastrophic flooding on stream biochemistry in a headwater stream in Shenandosh National Park, USA. Hydrological Process, 22, 3789-3771.
Rothwell J. J., Dise N. B., Taylor K. G., Allott T. E. H., Scholefield P., Davies H., and Neal C. (2010) A spatial and seasonal assessment of river water chemistry across North West England. Science of the Total Environment, 408, 841-855.
Roy, S., Gaillardet, J., and Allegre, C. J. (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica et Cosmochimica Acta, 63, 1277-1292.
Salmon, C. D., Walter, M. T., Hedin, L. O., and Brown, M. G. (2001) Hydrological controls on chemical export from an undisturbed old growth Chilean forest. Journal of Hydrology, 253, 69-80.
Schmidt, K. M., Montgomery, D. R. (1995) Limits to relief. Science, 270, 617-620.
Sepulveda, S. A., Serey, A., Lara, M., Pavez, A., and Rebolledo, S. (2010) Landslides induced by the April 2007 Aysen Fjord earthquake, Chilean Patagonia. Landslides, 7, 483-492.
Shieh, S. L. (2000) User’s Guild for typhoon Forecasting in the Taiwan Area (VIII), Central Weather Bureau, Taipei.
Shuin, Y., Hotta, N., Suzuki, M., and Ogawa, K. (2012) Estimating the effects of heavy rainfall conditions on shallow landslides using a distributed landslide conceptual model. Physics and Chemistry of the Earth, 49, 44-51.
Sidle, R. C., Swanston, D. N. (1982) Analysis of a small debris slide in coastal Alaska. Canadian Geotechnical Journal, 19, 167-174.
Stallard, R. F., Edmond, J. M. (1981) Geochemistry of the Amazon: II, The influence of the geology and weathering environment in the dissolved load at the time of the peak discharge. Journal of Geophysical Research, 86, 9844-9858.
Stark, C. P., Hovius, N. (2001) The characterization of landslide size distributions, Geophysical Research Letters, 28, 1091-1094.
Strahler, A. H., Strahler, A. (1998) Introducing physical geography, 2nd edition, Wiley, New York.
Tazaki, K. (2006) Green-tuff landslide areas are beneficial for rise nutrition in Japan. Anais da Acsdemia Brasileira De Ciencias, 78, 749-763.
Thomas, R. B., Lewis, J. (1995) An evaluation of flow-stratified sampling for estimating suspended sediment loads. Journal of Hydrology, 170, 27-45.
U.S. EPA (2001) Environmental Investigations Standard Operating Procedures and Quality Assurance Manual.
Walling, D. E. (1977) Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resources Research, 13, 531-538.
Wang, L. J., Hsia Y. J., King H. B., Harrison R. B., Liou C. B., Hwong J. L., and Lin T. C. (1997) Chemistry changes in the solution flowing through the Fushan Forest. Quarterly Journal of Chinese Forestry, 30, 203-215.
Wang, L. J., Hsia, Y. J., King, H. B., Lin, T. C., Hwong, J. L., and Liou, C. B. (1996) Storm solute changes in the Fushan Forested Watershed, NE Taiwan. Journal of Chinese Soil and Water Conservation, 27, 97-105.
Wieczorek, G. F., Morgan, B. A., and Campbell, R. H. (2000) Debris-flow hazards in the blue ridge of Central Virginia. Environmental and Engineering Geoscience, 6, 3-23.
Wohl, E. (2000) Mountain Rivers Revisted. Water Resources Monograph, 19.
Wu, W., Sidle, R. C. (1995) A distributed slope stability model for steep forested hillslopes. Water Resources Research, 31, 2097-2110.
Xu, Z., Liu, C. Q. (2007) Chemical Weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China. Chemical Geology, 239, 83-95.
Yang, C., Telmer, K., and Veizer, J. (1996) Chemical dynamics of the “St. Lawrence” riverine system: δ18OH2O, δ13CDIC, δ34Ssulfate and dissolved 13C/ 86Sr. Geochimica et Cosmochimica Acta, 60, 851-866.
Zhang, J., Quay, P. D., and Wilbur, D. O. (1995) Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta, 59, 107-114.
Zhang, Y., Liu,S., Zhang, Z., Yao, Q., and Hong G. (2007) Source and distribution of carbon within the Yangtze River system, Estuarine. Coastal and Shelf Science, 71, 13-25.
Caissiea, D., Serge Jolicoeurb, S., Bouchardc, M., Poncetc, E.(2002) Comparison of streamflow between pre and post timber harvesting in Catamaran Brook (Canada), Journal of Hydrology, 258, 232-248.
Keller, G. (2008) Managerial Statistics, 8th edition. South-Western.
Berenson, M. L., Levine, D. M., and Krehbiel, T. C. (2012) Basic Business Statistics: Concepts and Applications, 12th ed. Pearson Prentice Hall, New Jersey, U.S.A.
Weiers, R. M. (2005) Introduction to Business Statistics, 5th ed. Duxbury, Belmont, CA, U.S.A.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6032-
dc.description.abstract本研究藉由分析花蓮和平溪流域2007年至2012年的四個山崩事件,探討崩塌地、河川化性,以及輸砂量間的相互對應關係。研究結果顯示,崩塌率與颱風的累積雨量及降雨強度有明顯正相關性,蘇拉颱風造成之山崩有最高的崩塌率、新生率與重現率,分別為2.1%、71.4%,以及58.2%。此外,岩體強度較低的廬山層和畢祿山層,占全區80%以上的崩塌率,顯示各地層之崩塌率與岩體強度有著負相關的趨勢。從崩塌地在坡體上的分布發現,大約有30%的崩塌地面積集中在靠近河道的位置,這些崩塌地在蘇拉颱風之後向上擴大,變成從河道延伸至山嶺的大型崩塌地,使得更多地質材料與碳酸鹽礦物等物質進入河川,除了提供颱風期間輸砂量增加的來源,也導致K+、Ca2+、溶解無機碳濃度,以及δ13CDIC急遽地上升。
由近30年的輸砂量計算結果顯示,本研究區之平均年輸砂量為14.45Mt,其中,颱風暴雨的沖刷與山崩事件為年輸砂量主要的供應來源,颱風期間的累積雨量越大,輸砂量占該年度輸砂量的比例也越大。而濕季的平均輸砂量為乾季的12.1倍,也顯示由於濕季雨量較充沛,造成乾濕季輸砂量的差異性。
從河水Gibbs圖得知,和平溪之河水離子濃度受到岩性影響,屬於「岩性控制」類型,約有40%至80%來自於碳酸鹽礦物。河川化性與流量的關係指出,Na+和Mg2+濃度和流量間屬於稀釋作用的關係,濕季時的濃度較低;Cl-濃度和流量間屬於水文常數平衡的關係,乾濕兩季的濃度沒有明顯之差異;Ca2+和K+濃度和流量間屬於潤濕作用的關係,在濕季時的濃度分別為乾季時的1.13倍和1.07倍;溶解無機碳濃度則是在流量大於20m3/sec時,和流量有明顯正相關的趨勢。
zh_TW
dc.description.abstractThis research concerned the relationship among four typhoon-induced landslide events, river chemistry and sediment discharge in the catchment of the Heping River during 2007 to 2012. The analyzed results point out that higher rainfall intensity and cumulative rainfall would cause higher landslide ratios. Therefore, typhoon Saola triggered a highest landslide ratio of 2.1%, new generation ratio of 71.4%, and reactivated ratio of 58.2% among four typhoons. In addition, More than 80% landslides occurred in Lushan and Pilushan Formations because of the weak rock strength. About 30% of landslides located near the river and expanded to hilltop after typhoon Saola. Consequently, more deposits and carbonate minerals were transported into the river, causing the concentration of K+, Ca2+, dissolved inorganic carbon and δ13CDIC raised abruptly.
The average annual sediment discharge is 14.45 Mt and mainly resulted from the contribution of typhoon events. In comparison with sediment discharge and rainfall, the greater the cumulative rainfall during typhoon, the higher the proportion of typhoon-triggered sediment discharge to annual sediment discharge. The results also show that the average sediment discharge in wet season is 13.35 Mt, which is 12.1 times of dry season due to the difference of rainfall.
The plot of the total dissolved salts versus Na+/ (Na++Ca2+) reflected that the chemical properties of Heping river belonged to rock-dominated type. Moreover, the relationship between water discharge and ionic concentrations indicate that the concentrations of Na+ and Mg2+ decreased with increasing discharge, the ionic concentrations were lower in wet season. In contrast, the concentrations of Ca2+ and K+ increased with increasing discharge, the concentrations in wet season were 1.13 and 1.07 times of the dry season, respectively. The concentrations of dissolved inorganic have apparently positive correlation with discharge when discharge is higher than 20 m3/sec.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:19:41Z (GMT). No. of bitstreams: 1
ntu-102-R00224204-1.pdf: 9958381 bytes, checksum: ffb44563488cf967d46136ed8cbc9c5b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1研究動機與目的 1
1.2地理位置及交通概況 2
第二章 前人研究 4
2.1降雨和山崩之關係 4
2.2輸砂量估算與異重流特性 6
2.3河川化性與地質環境關係 9
2.4河水溶解無機碳 11
第三章 研究區域概況 13
3.1地形概況 13
3.2地質概況 16
3.3土壤概況 19
3.4氣候與水文概況 20
3.5颱風事件 21
第四章 研究方法 23
4.1野外調查工作 23
4.1.1樣品採集 23
4.1.2施密特錘試驗 25
4.2實驗室試驗 25
4.3崩塌地判釋 25
4.4輸砂量估算 31
4.5河川化學性質分析 33
4.5.1陰離子分析方法 34
4.5.2陽離子分析方法 34
4.5.3溶解無機碳分析方法 34
4.5.4岩石元素含量分析方法 35
4.5.5離子濃度與地質環境相關性分析 35
4.5.6溶解無機碳與地質環境相關性分析 39
第五章 研究結果 42
5.1地質材料性質試驗結果 42
5.1.1自然物理性質試驗 42
5.1.2岩石力學性質及消散耐久試驗 43
5.2崩塌地判釋結果 46
5.2.1崩塌地統計 46
5.2.2崩塌地在坡體分布狀況 50
5.2.3崩塌與岩體強度和颱風降雨之關係 53
5.3輸砂量估算結果 54
5.3.1歷年輸砂量統計 54
5.3.2輸砂量與乾濕季之關係 58
5.3.3花蓮群震對輸砂濃度之影響 60
5.4河川化學性質分析結果 63
5.4.1主要離子濃度分析結果 63
5.4.2溶解無機碳濃度與碳13同位素分析結果 67
5.5岩石元素含量分析結果 69
第六章 崩塌地與河川化性之關係 71
6.1崩塌地面積與離子濃度之關係 71
6.2離子濃度與岩性之相關性 73
6.3離子濃度與流量之相關性以及乾濕季變化 75
第七章 討論 79
7.1崩塌地面積機率分佈之比較 79
7.2碳酸鹽對河水陽離子的貢獻比例 83
7.3離子濃度與流量之回歸分析 85
7.4異重流事件之推估 87
第八章 結論 90
參考文獻 92
附錄一 河水採集與樣品前處理方法 106
附錄二 施密特錘單壓強度換算表 107
附錄三 自然物理性質試驗方法 108
附錄四 點荷重試驗方法 110
附錄五 消散耐久試驗方法 112
附錄六 陰離子分析方法 113
附錄七 陽離子分析方法 114
附錄八 溶解無機碳分析方法 115
dc.language.isozh-TW
dc.title花蓮和平溪流域山崩作用與河川化性之相關性zh_TW
dc.titleThe relationship between landslide and river chemistry in Heping River, Hualienen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林曉武,董家鈞,侯秉承
dc.subject.keyword崩塌地,離子濃度,溶解無機碳,δ13CDIC,輸砂量,zh_TW
dc.subject.keywordlandslide,ion concentration,dissolved organic carbon,δ13CDIC,sediment discharge,en
dc.relation.page115
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf9.72 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved